
www.rspsciencehub.com Volume 02 Issue 09 September 2020

International Research Journal on Advanced Science Hub (IRJASH) 59

Load balancing using openday light SDN controller: Case study
Prof.Vijaya Eligar

1
, Dr.Nalini Iyer

2
, Nihal N.D

3
,Nikhil S.Hugar

4
, P.YashwantKumar

5
,M.N.Manjunath

6

1
Assistant Professor,School of Electronics and Communication, KLE Technological University, Hubballi ,

India
2
Professor and HOS,School of Electronics and Communication, KLE Technological University, Hubballi ,

India
3
Student,School of Electronics and Communication, KLE Technological University, Hubballi , India

4
Student,School of Electronics and Communication, KLE Technological University, Hubballi , India

5
Student,School of Electronics and Communication, KLE Technological University, Hubballi , India

6
Student,School of Electronics and Communication, KLE Technological University, Hubballi , India

vijayaeligar@kletech.ac.in
1

Abstract

Traditional networking architectures have many limitations that need to be overcome to meet modern IT

requirements. To overcome these limitations; Software Defined Networking (SDN) is taking place as the

new networking approach. As traditional networking uses static switches, resource utilization is poor.

There are packet loss and delay during switch breakdown. This paper proposes an implementation of a

load balancing algorithm for an SDN based network to overcome the stated issues. To test the algorithm, a

network is emulated using the Mininet and OpenDaylight platform (ODL) is used as an SDN controller.

Python coding language is used to create fat-tree network topology and to write a load balancing

algorithm. Finally, iPerf and Wireshark is used to test network performance. The network was tested

before and after running the load balancing algorithm. The testing focused on some of the Quality of

Service (QoS) parameters such as bandwidth and transfer rate in the fat-tree network. The algorithm

increased bandwidth with at least more than 50\%, and improved network utilization

Keywords: SDN, ODL, Mininet, iPerf, Wireshark, QoS

1. Introduction

The modern-day IT industry adopts a traditional

network architecture. Traditional network

architecture uses separate switches and routers. In

traditional networking the network and the data

plane are one whole part and are not separate.

Whereas in the Software Defined Networking

(SDN) the whole network is divided into a data

plane and control plane. Traditional network is a

hardware based and Software Defined Networking

(SDN) is a software-based networking which uses

Application Programming Interfaces (API's) to

directly connect to the applications, boosting

network performance, security and making the

network flexible. As the traditional network has

many limitations there is a need for a notable

change in the traditional networking. To overcome

these limitations the Software Defined Networking

(SDN) is stepping up as the new networking

approach. In the complete network the role of the

data plane is to transfer the data packets and the

role of control plane which having its own

intelligence acts as a manager, instructing the data

planes throughout the network. In general, SDN

provides the overall central view of the complete

network.

mailto:vijayaeligar@kletech.ac.in1

www.rspsciencehub.com Volume 02 Issue 09 September 2020

International Research Journal on Advanced Science Hub (IRJASH) 60

There are two main protocols used by SDN to

communicate with its Network Elements (NE) i.e.

switches/routers. They are OpenFlow and open

virtual switch database. OpenFlow protocol is an

open standard protocol which allows the

researchers to run their experiments, without the

need of vendors to disclose the practical details of

their network devices. OpenFlow is not to be

misunderstood with SDN. Where SDN is the

network architecture which divides the network

plane and the data plane, the main job is to convey

the messages from the control layer to the

infrastructure layer.

Load Balancing provides an efficient way of

distribution of traffic i.e. network and application

traffic between different servers which are

collectively known as clusters of servers. The main

aim of load balancing is to prevent overloading

and possible breaking down of a single server.

Load Balancers are designed to address the three

main problem domains, those are availability,

performance and economy. Classic Load Balancer,

Network Load Balancer and Application Load

Balancer are the major load balancers. As the

name suggests the application load balancer and

the network load balancer are designed to increase

the efficiency of the applications i.e. API's and the

network.

In order to increase the bandwidth, throughput

optimization and include redundancy, network

load balancing is performed. The network traffic is

spread throughout several servers and this is

achieved by network load balancing. This load

balancing provides the ability to balance network

sessions between various applications to provide

equal amount of bandwidth between different

LAN users. Link load balancer is usually involved

in load balancing. Link balancer is a appliance

which provides in-bound and out-bound to and

from multiple internet links. They are placed

between the firewall and the gateway router. There

are different load balancing algorithms such as

Round Robin, Least connections, weighted least

connections, and much more. The purpose of this

research is to introduce the dynamic load

balancing algorithm of Nayan Seth in SDN-based

network to test and examine the possibilities of

accomplish better results.

2. Literature Review

2.1 Limitations of traditional networks
Today’s network must scale to accommodate
increased workloads with greater agility, while also
keeping costs at a minimum. Traditional approach
has significant limitations such as:

 Complexity: As the data communication is
increasing rapidly day by day and with this
there brings a need to add new devices.
Whenever a new network element is added in
the network, rewiring of the network is
required. This also requires management of the
network. Managing these big network
frameworks becomes difficult. This makes
scaling of network very difficult. [1-4]

 Static Environment: Since implementation of
network wide policies in a conventional
network is time-consuming and complicated,
due to this the network will not be touched.
This dormant feature of the network
environment makes it very challenging for
companies to gain from the rising convenience,
such as introducing new apps or web services,
stifling modernization and shackling business
development.

 Vendor lock-in: Companies are often locked
with only one provider. Due to lack of
protocols for configuring equipment among
different network device producers. This limits
the possibility of tailoring the network to
satisfy the individual business needs.[1]

The traditional is shown in fig.1.

Fig.1. Traditional network

2.2 Software-Defined Networking

SDN is a developing network technology which

overcomes the limitations of a traditional network.

It is a significant change in the traditional network

by separating the control and the data plane as

www.rspsciencehub.com Volume 02 Issue 09 September 2020

International Research Journal on Advanced Science Hub (IRJASH) 61

shown in fig.2. SDN is a type of network

architecture that allows the network to controlled

centrally [2]. SDN has created a very bright future

with the help of this technology to surmount the

need for reliable, secure, flexible and well

managed next-generation networks. SDN allows

network behaviour to be configured centrally

through open API software applications. It

provides various facilities like multi-vendor

operability.

An abstraction of SDN-technology infrastructure

and software form the basic technologies and

equipment that provide network access physical

communication. Instead of management interfaces

closely linked to hardware as in conventional

network, apps communicate with the network

through API’s. It enables users to create network

aware apps, intelligently monitor network

conditions, and automatically adjust the network

configuration as needed.[3]

Fig. 2. SDN

2.3 OpenFlow

It is considered as one of the first SDN standard.

It originally defined the SDN communication

protocol that permits the SDN controller,

physically and virtually(hypervisor-based), to

interact directly with the transmission level of

network devices like switches and routers, so that

it gets adapted to the continuous and ongoing

business trends and essentials. Stanford University

originally imagined and implemented this as a part

of network research. Its main purpose was to allow

experimental protocols on campus networks to be

developed that were to be used for research and

development. Prior to this universities have had to

build their own research sites from scratch before

that. [5-8]

Any system that wants to communicate with an

SDN controller must be knowing the OpenFlow

protocol to work in its domain. The SDN

controller push converts into a switch/router flow

table via this interface, enabling network

administrators to track partition traffic, control

flows for optimum performance and check for

various different configurations and applications

[4]. Open Networking Foundation, a non-profit

organization was formed by a group of service

providers to promote and standardize the use of

OpenFlow in production networks. OpenDaylight

controller is shown in fig.3.

Fig. 1. OpenDaylight

2.4 Network Load Balancing

This technique is very important in building high
speed networks, ensuring efficiency of the network.
The main necessity of the load balancing is to
avoid congestion in the network and maintain
efficient flow of data in the network is by
distributing the traffic from the overloaded paths to
the less loaded paths. Doing so, increases the
network utiliza*tion and throughput.

2.5 Fat-Tree topology

Invented by Charles E. Leiserson in 1985. As the
named suggests this network is in a form of tree,
processors connected to the bottom layer. It is
known by the fact that the number of links to its
siblings is equal to the number of links up to its
parent on the top level for each turn. It is three
layer architecture. This topology includes the
numerous paths between the hosts so that the path

www.rspsciencehub.com Volume 02 Issue 09 September 2020

International Research Journal on Advanced Science Hub (IRJASH) 62

with the high bandwidth can be allocated. This
multipath feature of the tree can be helps in traffic
distribution among different network
components.[5]. Fig.4 shows a fat-tree topology.

Fig. 2. Fat-tree topology

2.6 Network Load Balancing

The task of the Nayan Seth’s algorithm [9] is to

distribute traffic of upcoming and incoming

network flows in order to achieve the best possible

resource utilization of each of the links present in a

network. In order to achieve such aim, it is

necessary to keep track of the current state of the

network [7]. The flow chart of the implementation

is shown in fig.5

Fig. 5.Implementation flow chart

The first step of the algorithm is to collect
operational information of the topology and its
devices. Such as IPs, MAC addresses, Ports,
Connections, etc. Next step is to find route
information based on Dijkstra's algorithm, the goal
here is to narrow the search into a small segment of
the FatTree topology and to find the shortest paths
from source host to destination host. And then find
total link cost for all these paths between the source
and destination hosts. Once the transmission costs
of the links are calculated, the flows are created
depending on the minimum transmission cost of
the links at the given time. Based on the cost, the
best path is selected and static flows are pushed
into eachs witch in the current best path. with that,
every switch within the selected path will have the
necessary flow entries to carry out the
communication between the two end points. Hence,
this program is dynamic in nature as it continue to
update this information every minute. In this
research a test-bed has been implemented under
Linux, using Mininet software to emulate the
network, the open-source[6] OpenDaylight
platform (ODL) as SDN controller, and Python
programming language to define the fat-tree
topology and to write the load balancing algorithm
program, and iPerf to test network performance.
The fig.6 illustrate the design steps.

Fig. 6. Design steps

Mininet:

Mininet is a network emulator that allows
prototyping large networks on a single machine [6].
It runs a collection of end-hosts, switches, routers,
and links on a singleLinux kernel. It uses
lightweight virtualization to make a single system
look like a complete network, running the same

www.rspsciencehub.com Volume 02 Issue 09 September 2020

International Research Journal on Advanced Science Hub (IRJASH) 63

kernel, system, and user code. Mininet main
advantages:

•Mininet is an open source project.

•Custom topologies can be created.

•Mininet runs real programs.

•Packet forwarding can be customized.

Compared to simulators, Mininet runs real,
unmodified code including application code, OS
kernel code, and control plane code (both
OpenFlow controller code and Open vSwitch code)
and easily connects to real networks.

OpendayLight:

The OpenDaylight Project (ODL) [6]is a highly
available, modular, extensible, scalable and multi-
protocol controller infrastructure built for SDN
deployments on modern heterogeneous multi-
vendor networks. ODL provides a model-driven
service abstraction platform that allows users to
write apps that easily work across a wide variety of
hardware and south-bound protocols. Furthermore,
it contains internal plugins that add services and
functionalities to the network. For example, it has
dynamic plugins that allow to gather statistics as
well as to obtain the topology of the network.
[9,10]

iPerf:

iPerf is a commonly used network testing tool for
measuring Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP) bandwidth
performance and the quality of a network link. By
tuning of various parameters related to timing,
buffers and protocols (TCP, UDP, SCTP with IPv4
and IPv6), the user is able to perform a number of
tests that provide an insight on the network's
bandwidth availability, delay, jitter and data
loss.iPerf is an open source software as shown in
fig.7.It runs on various platforms including Linux,
UNIX and Windows.

Fig. 3. iPerf h1 h4

Python:

In this research, Python has been used in mininet to
define the Fat-tree topology, also it has been used
to write the load balancing algorithm program.
Python is an interpreted, object-oriented language
suitable for many purposes. It has a clear, intuitive
syntax, powerful high-level data structures, and a
flexible dynamic type system. Python can be used
interactively, in stand-alone scripts, for large
programs, or as an extension language for existing
applications. The language runs on Linux,
Macintosh, and Windows machines. Python is
easily extensible through modules written in C or
C++, and can also be embedded in applications as a
library. There are also a number of system specific
extensions. A large library of standard modules
written in Python also exists. Compared to C,
Python programs are much shorter, and
consequently much faster to write. In comparison
with Perl, Python code is easier to read, write and
maintain. Relative to TCL, Python is better suited
for larger or more complicated programs.

Results

After selecting the best path and pushing the flow

into that, we analyze the results using wireshark

and iperf. We see that there is increase in both

bandwidth and Transfer rate. The jitter is

decreased. Hence, the expected results are

obtained by following the procedure. Fig.8 shows

the (ping) jitter from h1 to h4. And the transfer and

bandwidth after load balancing is shown in fig.9

Fig. 4. Jitter result

www.rspsciencehub.com Volume 02 Issue 09 September 2020

International Research Journal on Advanced Science Hub (IRJASH) 64

Fig. 5. Transfer and B/W result

Conclusions

This research describes the implementation of

Nayan Seth’s dynamic load balancing algorithm to

efficiently distribute flows for fat-tree networks

through multiple alternative paths between a single

pair of hosts. The network was tested before and

after running the load balancing algorithm. The

testing focused on some of QoS parameters such

as throughput, delay, and packet loss between two

servers in the fat-tree network. The results showed

that the network performance has increased after

running the load balancing algorithm program, the

algorithm was able to increase throughput, and

improve network utilization. However, in large

networks it increased packet loss and jitter.

In future work, next suggestions are planned: The

first suggestion is to investigate the performances

of the dynamic load balancing program on a

different popular SDN controller, such as Research

Floodlight, Beacon, NOX/POX, etc. and compare

the results. The second suggestion is to investigate

the performances of different topologies of

different sizes, other than the fat-tree topology. To

test if there are any other limitations with the

algorithm. And finally, is to extend the algorithm

to traditional networks, or hybrid networks with

both OpenFlow and regular switches.

References

[1]. https://carriersolutionsgroup.com/how-is-

sdn-different-than-a-traditional-network/

[2]. Badotra, Sumit. (2017). A Review Paper on

Software Defined Networking.

International Journal of Advanced

Computer Research.

[3]. https://www.ciena.com/insights/what-

is/What-Is-SDN.html

[4]. https://www.sdxcentral.com/networking/sd

n/definitions/what-is-openflow/

[5]. https://clusterdesign.org/fat-trees/

[6]. Lindinkosi Zulu, Patrice Umenne, Kingsley

Ogudo. A “Emulating Software Defined

Network Using Mininet and

OpenDaylightController Hosted on

Amazon Web Services Cloud Platform to

Demonstrate a Realistic Programmable

Network”, 2018 International Conference

on Intelligent and Innovative Computing

Applications (ICONIC),Electronic ISBN:

978-1-5386-6477-3

[7]. Diego Kreutz , Fernando M. V. Ramos ,

Paulo Esteves Veríssimo , Christian Esteve

Rothenberg , Siamak Azodol, “Software-

Defined Networking: A Comprehensive

Survey”, Proceedings of the IEEE

(Volume: 103 , Issue: 1 , Jan. 2015) ISSN

(Online) 1558-2256.

[8]. Aniket Pramanik, Rishikesh, Vikash Nagar,

Satyam Dwivedi, Biplav Choudhury , “A

Study on Topology in Computer Network”,

2014 7th International Conference on

Intelligent Computation Technology and

Automation, Electronic ISBN: 978-1-4799-

6636-3

[9]. Nayan Seth. April, 2016. SDN Load

Balancing. Retrieved from

[10].https://github.com/nayanseth/sdnloadbala

ncing

https://carriersolutionsgroup.com/how-is-sdn-different-than-a-traditional-network/
https://carriersolutionsgroup.com/how-is-sdn-different-than-a-traditional-network/
https://www.ciena.com/insights/what-is/What-Is-SDN.html
https://www.ciena.com/insights/what-is/What-Is-SDN.html
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://clusterdesign.org/fat-trees/

