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Abstract 

This paper investigates a single server batch service queueing system with second optional service and 

reneging. The transient state probabilities of the queueing model are computed by using fourth order 

Runge Kutta method. Cost analysis is performed to determine the optimal values of the service rates of 

First Essential Service (FES) and Second Optional Service (SOS) simultaneously at the minimum total 

expected cost per unit time. Some important performance measures and numerical illustrations are 

provided in order to show the managerial intuitions of the model. 
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1.Introduction 

 

In queueing theory, a service process is among the 

important characteristics of a queueing system. 

Recently, most of the service systems adopted the 

provision of more than one service. For instance, 

in transport industry passengers get transport 

service from buses/airline and other services like 

food, soft drinks, etc. However, majority of them 

may prefer only main service while few of them 

may demand an optional service. Complete details 

of these situations have been presented by [1-5] 

and considered an 𝑀/𝐺/1 queue with second 

optional service which assumed to follow 

exponential distribution while first essential 

service is a general distribution. [6-8] considered 

both SOS and FES having a general service time 

distribution. 

Balking and reneging are two impatient acts where 

a customer tends to leave without receiving the 

service due to longer waiting. Queuing problems 

with balking and reneging was studied by [2]. A 

single server queueing model with impatience has 

been presented by[9,10], where the customers lose 

patience if the wait is more than the threshold they  

fixed. Later on, [11,12] studied a finite buffer 

multiple working vacation queues with balking, 

reneging and vacation interruption under N-Policy 

and obtained the solution for the steady state 

probabilities using recursive. 

The study of the transient solution of the 

performance measures of the queue system has 

been analysed by [14-18] etc. A time dependent 

solution of a single server queueing system with a 

Poisson input process has been considered by 

[19,20]. The transient behaviour of the infinite 

capacity 𝑀/𝐺/1 modelwith batch arrivals and 

server vacations has been discussed by [21]. The 

transient behaviour analysis of an 𝑀/𝑀/1/
𝑁 queue with working breakdowns and server 

vacations has been studied by [22]. 
From the above literature study, most of the 
heterogeneous server queueing systems are 
analysed in steady state. However, the steady state 
measures do not explain the real picture of the 
system behaviour, since they ignore the transient 
and the initial behaviour of a system [18]. In most 
of the practical applications, the state of the system 
experiences a change and such changes can be 
comprehended by the transient behaviour. 
Therefore, this article aims to study a𝑀/𝑀[𝑏]/1/
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𝑁queue with SOS and reneging in transient state. 
The transient probabilities of the queueing model 
are obtained using fourth order Runge-Kutta 
method. 
2. Model Description 

 

We consider an 𝑀/𝑀[𝑏]/1/𝑁 queueing model 
with SOS and reneging customers in which the 
customers arrive according to a Poisson process 
with mean rate 𝜆. The service times distribution of 
both FES and SOS are exponential with mean rates 
µ1 and µ2, respectively and the services are given 
in batches of size not more than 𝑏 such that if the 
server finds the customers less or equal to 𝑏 in the 
waiting queue, the server takes all of them in the 
batch for service, but if the server finds the 
customers more than 𝑏 waiting in the queue, then 
the he takes a batch of size 𝑏 while others remain 
waiting in the queue. The FES is required by all 
arriving customers and after completing FES, they 
may opt SOS with probability 𝑟 or may leave the 
system with probability (1 −  𝑟). The capacity of 
the system is finite (𝑁). A customer upon joining 
the queueing system and waiting in queue for some 
time, may get impatient and renege from the queue 
if his waiting time is beyond the expected time 
limit. Reneging times follow an exponential 
distribution with rate 𝛼. 

2.1 Formulation of Mathematical Model  

The 𝑀/𝑀[𝑏]/1/𝑁 queue with SOS and reneging 
can be modeled by a two-dimensional continuous 
time Markov process {(𝑁(𝑡), 𝐽(𝑡)); 𝑡 ≥  0}, where, 
𝑁(𝑡) is the number of customers in the queue, and 
𝐽(𝑡) is the server state with 

𝐽(𝑡) = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔 𝐹𝐸𝑆  
2, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔 𝑆𝑂𝑆 

 

The state space of the Markov process is given by 

Ω = {(𝑛, 𝑖); 𝑛 ≥ 0; 𝑖 = 1, 2} 

The transient probabilities are defined as 

𝑃𝑛,𝑖(𝑡) = 𝑃𝑟{𝑁(𝑡) = 𝑛, 𝐽(𝑡) = 𝑖}; 0 ≤ 𝑛 ≤ 𝑁,
𝑖 = 1, 2 

Here, 𝑃𝑛,𝑖(𝑡) is the transient probability that there 

are 𝑛 customers in the queue at time 𝑡 and the 
server is providing FES (SOS) service, and 𝑄(𝑡) is 
the probability that the queue is empty at time 𝑡 and 
the server is idle. Using Markov theory, 
thedifferential-difference equations of the model 
are as follows: 

𝑄′(𝑡) = −𝜆𝑄(𝑡) + (1 − 𝑟)µ1𝑃0,1(𝑡)
+ µ2𝑃0,2(𝑡) … … … … … … … … … 1 

𝑃′
0,1(𝑡) = −(𝜆 + µ1)𝑃0,1(𝑡) + (1 −

𝑟)µ1 ∑ 𝑃𝑖,1
𝑏
𝑖=1 (𝑡) + µ2 ∑ 𝑃𝑖,2

𝑏
𝑖=1 (𝑡) + 𝛼𝑃1,1(𝑡) +

𝜆𝑄(𝑡)………………………………………….....2 

𝑃′
𝑛,1(𝑡) = −(𝜆 + µ1 + 𝛼)𝑃𝑛,1(𝑡)

+ (1 − 𝑟)µ1𝑃𝑛+𝑏,1(𝑡)
+ µ2𝑃𝑛+𝑏,2(𝑡) + 𝛼𝑃𝑛+1,1(𝑡)
+ 𝜆𝑃𝑛−1,1(𝑡),     1 ≤ 𝑛
≤ 𝑁 − 𝑏 … … … … … … … … … … 3 

𝑃′
𝑛,1(𝑡) = −(𝜆 + µ1 + 𝛼)𝑃𝑛,1(𝑡) + 𝛼𝑃𝑛+1,1(𝑡)

+ 𝜆𝑃𝑛−1,1(𝑡),
𝑁 − 𝑏 + 1 ≤ 𝑛 ≤ 𝑁 − 1 … … … 4 

𝑃′
𝑁,1(𝑡) = −(µ1 + 𝛼)𝑃𝑁,1(𝑡) + 𝜆𝑃𝑁−1,1(𝑡)……5 

𝑃′
0,2(𝑡) = −(𝜆 + µ2)𝑃0,2(𝑡) + 𝑟µ1𝑃0,1(𝑡)

+ 𝛼𝑃1,2(𝑡) … … … … … … … … … . .6 

𝑃′
𝑛,2(𝑡) = −(𝜆 + µ2 + 𝛼)𝑃𝑛,2(𝑡) + 𝜆𝑃𝑛−1,1(𝑡)

+ 𝑟µ1𝑃𝑛,1(𝑡) + 𝛼𝑃𝑛+1,2(𝑡),
1 ≤ 𝑛 ≤ 𝑁 − 1 … … … … … … … .7 

𝑃′
𝑁,2(𝑡) = −(µ2 + 𝛼)𝑃𝑁,2(𝑡) + 𝜆𝑃𝑁−1,1(𝑡) +

𝑟µ1𝑃𝑁,1(𝑡), ……………………………………...8 

 

The above is an implicit set of differential 
equations whose analytical solution is a difficult 
task. However, we shall use the numerical 
technique to derive the approximate solutions 
assuming some initial conditions. 

 

3. Transient Solution of the Model 

In this section, we apply the fourth order Runge-
Kutta method (R-K-4) to obtain the numerical 
solutions to the above equations. We assume that 
the system is empty at the starting point when the 
server is idle and the probability of the state of the 
initial system at time 𝑡 =  0 are given as follows: 

𝑄(0) = 1, 𝑃𝑛,𝑖(0) = 0, 𝑖 = 1, 2, 0 ≤ 𝑛 ≤ 𝑁 

The set of differential difference equations (1) to 
(8) can be expressed as: 

dx

dt
= 𝑓(𝑡, 𝑥);   𝑥(𝑡0) = 𝑥0 

The formula used for Runge-Kutta method of 
fourth order is given by: 
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𝑥𝑗 + 1 = 𝑥𝑗 + [
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
] ∆𝑡 

where;  ∆𝑡is the step size, and 0 ≤  𝑗 ≤  𝑁 − 1 

𝑘1 = 𝑓(𝑡𝑗 , 𝑥𝑗)∆𝑡 

𝑘2 = 𝑓(𝑡𝑗 +
∆𝑡

2
, 𝑥𝑗 +

𝑘1

2
 )∆𝑡 

𝑘3 = 𝑓(𝑡𝑗 +
∆𝑡

2
, 𝑥𝑗 +

𝑘2

2
 )∆𝑡 

𝑘4 = 𝑓(𝑡𝑗 + ∆𝑡, 𝑥𝑗 + 𝑘3 )∆𝑡 

In our model, we consider 𝑥 as 𝑃𝑛,𝑖(𝑡)and 𝑓(𝑡, 𝑥) 

as 
𝑑𝑃𝑛,𝑖(𝑡)

𝑑𝑡
 

 

4. Performance Measures 

In this section, we present the performance 
measures for anticipating the system behaviour. 
The various performance measures are as given 
below.  

(a) Expected number of customers in the queue 
during FES, SOS and the overall queue length 
are given, respectively by 

𝐿𝑞𝐹𝐸𝑆(𝑡) = ∑ 𝑛𝑃𝑛,1

𝑁

𝑛=0

(𝑡),   

𝐿𝑞𝑆𝑂𝑆(𝑡) = ∑ 𝑛𝑃𝑛,2

𝑁

𝑛=0

(𝑡) 

𝐿𝑞(𝑡) = 𝐿𝑞𝐹𝐸𝑆(𝑡) + 𝐿𝑞𝑆𝑂𝑆(𝑡) 

(b) The average reneging rate is given by 

𝑅. 𝑅(𝑡) =  ∑ 𝛼𝑃𝑛,1

𝑁

𝑛=0

(𝑡) + ∑ 𝛼𝑃𝑛,2

𝑁

𝑛=0

(𝑡) 

(c) The blocking probability and the effective 
arrival rate are, respectively given by: 

𝑃𝑏𝑙𝑜𝑐𝑘(𝑡) = 𝑃𝑁,1(𝑡) + 𝑃𝑁,2(𝑡), 

𝜆′(𝑡) = 𝜆(1 − 𝑃𝑏𝑙𝑜𝑐𝑘(𝑡)) 

= 𝜆 [𝑄(𝑡) + ∑(𝑃𝑛,1(𝑡)

𝑁−1

𝑛=0

+ 𝑃𝑛,2(𝑡))] 

(d) As a result of reneging, the Average Load 
(AL) on the server is given by 

𝐴𝐿(𝑡) = 𝜆′(𝑡) − 𝑅. 𝑅(𝑡 

Using Little’s Law, we can determine 𝑊𝑞(𝑡) 

as follows: 

𝑊𝑞(𝑡) =
𝐿𝑞(𝑡)

𝐴𝐿(𝑡)
 

 

4.1 Cost Analysis 

In this section, we develop the total expected cost 
function per unit time based on the steady state 
system performance measure when 𝑡 →  ∞. Our 
objective is to determine the optimal value of 
service rates of FES and SOS i.e., (µ1 and µ2), 
respectively, so that the total cost function is 
minimized. Let us define the following cost 
elements: 

𝐶𝑞  ≡ Cost per unit time per customer present in 

the queue, 

𝐶1  ≡ Cost per unit time when the server is serving 
in FES,𝐶2  ≡ Cost per unit time when the server is 
serving in SOS, 𝐶𝑟  ≡ Cost per unit time per lost 
customer due to reneging. 

From the definitions of each cost element listed 
above, the steady state expected cost function 
𝑓(µ1, µ2) per customer per unit time can be written 
mathematically as:  

𝑓(µ1, µ2)  =  𝐶𝑞𝐿𝑞  + 𝐶1µ1  + 𝐶2µ2  +  𝐶𝑟𝐸[𝑅]. 

The above expected cost function is highly 
complex and non-linear in terms of 𝑓(µ1, µ2)and 
the derivatives of the cost function are not easily 
available. Therefore, we solve the above 
optimization problem using Quadratic Fit Search 
Method (QFSM), since this method is highly 
suitable for the non-differentiable objective 
functions. 

Given the point 𝜉 =  (𝜉1, 𝜉2), through QFSM, we 
fit a quadratic function that corresponds to 
functional values having a unique minimum, 𝜉𝑞 =
 (𝜉1

𝑞 , 𝜉2
𝑞 ), for the given objective function 𝑓(𝜉)  =

 𝑓(𝜉1, 𝜉2). Quadratic fit makes use of this 
approximation to improvise the current 3-point 
pattern by replacing one of its pointswith 
approximate optimum 𝜉𝑞. The unique optimum 
𝜉𝑞of the quadratic function agreeing with 𝑓(𝜉) at 

3 −point operation (𝜉𝑙, 𝜉𝑚, 𝜉ℎ ) occurs at 

𝜉𝑞

≅
1

2
[
𝑓(𝜉𝑙)[𝑠𝑚 − 𝑠ℎ] + 𝑓(𝜉𝑚)[𝑠ℎ − 𝑠𝑙] + 𝑓(𝜉ℎ)[𝑠𝑙 − 𝑠𝑚]

𝑓(𝜉𝑙)[𝜉𝑚 − 𝜉ℎ] + 𝑓(𝜉𝑚)[𝜉ℎ − 𝜉𝑙] + 𝑓(𝜉ℎ)[𝜉𝑙 − 𝜉𝑚]
] 
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Where,𝑠𝑙 = (𝜉𝑙)2 , 𝑠𝑚  = (𝜉𝑚)2  , 𝑠ℎ  = (𝜉ℎ)2 . 
For a detailed algorithm, one may refer Rardin 
(1997). 

5. Numerical Investigation 

In this section we demonstrate the applicability of 
the Runge-Kutta method in transient state models 
using MATLAB software. The numerical 
computations are presented in the form of tables 
and graphs. The values of the system parameters 

are assumed to be 𝜆 =  2, µ1  =  3, µ2  =  2.5, 𝛼 =
 0.1, 𝑟 =  0.36, 𝑁 =  10, 𝑏 =  5. 

As observed in Table 1, the transient probabilities 
obtained by Runge-Kutta method tend to the 
corresponding steady state probabilities for large 
values of 𝑡. This confirms correctness, accuracy 
and efficiency of the model. 

Table 3: Optimum cost for different 𝒃 and 

𝝀  ( 𝑵 =  𝟏𝟎, 𝒓 =  𝟎. 𝟑) at steady state for 𝒕 →  ∞ 

Table 1: Probabilities using Runge Kutta method 

𝑷𝒏.𝒊(𝒕) 
Transient solution 

𝒕 = 𝟑 𝒕 = 𝟏𝟎 𝒕 →  ∞ 

𝑄(𝑡) 0.3471 0.3457 0.3457 

𝑃0,1(𝑡) 0.2733 0.2731 0.2731 

𝑃0,2(𝑡) 0.0668 0.0668 0.0668 

𝑃1,1(𝑡) 0.1096 0.1097 0.1097 

𝑃1,2(𝑡) 0.0555 0.0555 0.0556 

    

𝑃10,1(𝑡) 0.0000 0.0000 0.0000 

𝑃10,2(𝑡) 0.0001 0.0000 0.0000 

Total 1.0000 1.0000 1.0000 

 

Table 2: Variation in different measures of effectiveness with the change in arrival rate (𝝀) 
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Table 3 provides the sensitivity analysis for 
optimum serviceµ1

∗ ,µ2
∗ , optimum cost 𝑓∗ and some 

performance measures. We observe that for fixed 
batch size the optimum service rates, cost, 
𝐿𝑞 , 𝑅. 𝑅, 𝑃𝑏𝑙𝑜𝑐𝑘, 𝐴𝐿 and 𝑊𝑞 are increasing as the 

arrival rate is increasing, which is in accordance 
with the practical situations. The trend is reversed 
when we fix 𝜆 and increase batch size value 𝑏. 

 

Table 3 provides the sensitivity analysis for optimum serviceµ
𝟏
∗ ,µ

𝟐
∗  

 

 

Fig.1: Transient state probability for 𝝀 = 𝟐 

𝜆 𝐿𝑞 𝑃𝑏𝑙𝑜𝑐𝑘 𝜆′ 𝑅𝑟 𝐴𝐿 𝑊𝑞 

1 0.1822 0.0000 0.9999 0.0413 0.9587 0.1900 

2 0.5937 0.0003 1.9994 0.0654 1.9340 0.3070 

3 1.1182 0.0029 2.9914 0.0783 2.9130 0.3839 

4 1.7160 0.0114 3.9543 0.0850 3.8693 0.4435 

5 2.3557 0.0284 4.8578 0.0879 4.7699 0.4939 

6 3.0034 0.0541 5.6754 0.0882 5.5871 0.5376 

7 3.6295 0.0868 6.3925 0.0869 6.3056 0.5756 

8 4.2135 0.1241 7.0070 0.0844 6.9226 0.6087 

9 4.7447 0.1638 7.5255 0.0813 7.4442 0.6374 

10 5.2199 0.2041 7.9590 0.0778 7.8812 0.6623 
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Fig.2: Transient state probability for 𝝀 = 𝟓 

 

Fig.3: Expected queue size versus time 
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Fig.4: Expected queue size versus time 

 

Fig.5: Effect of 𝜶 on the expected queue size with respect to time 
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Fig.6: Effect of 𝒓 on the expected queue size with respect to time 

 

Figures 1 and 2, plots the transient state 
probabilities versus time for different 𝜆 =
 2.0and 5.0, respectively with 𝛼 =  0.35. This 
graph is to show the sharp decrease in the idleness 
probability and the increase in FES probabilities as 
is the case when the rate of arrivals increases. 
Figure 3 shows the effect of arrival rate 𝜆 on the 
expected queue size with respect to time. We 
observe that the expected number of customers in 
the queue gradually increases as 𝜆 increases. In 
figure 4 one can observe that the expected queue 
size increases progressively from zero initially up 
to a certain value where it attains the steady state. 
In addition, we observed that the expected queue 
size in SOS is lower than in FES. Figures 5 and 6 
demonstrates the impact of α and r, respectively on 
the expected number of customers in the queue 
versus time. We can see that as 𝛼 increase the 
expected queue size decrease. Furthermore, we 
observed that initially the customers were patience 
with a variation of reneging rate, but as time goes 
on, some customers’ loss patience and decide to 
leave the queue. In figure 6 we observe that as 𝑟 
increases with time the queue size in both case 
SOS and FES increase. In addition, when 𝑟 
increase the expected queue size in SOS increase,  

 

this is due to the fact that more customers demand 
SOS. 

6. Practical Application of the model 

The model has numerous applications such as in 
hospital management systems, bank services, 
computer and communication networks, production 
system, etc. For example, in the hospital 
management systems the model can be applied to 
the situation where the outpatients request the 
appointment in the clinic system. The clinic officer 
monitors the length of booking windows for 
appointment of the outpatients, but since in most 
cases there is limited number of 
physicians/doctors,it leads to the unbalanced ratio 
between the number of outpatients and that of the 
physicians/doctors. This situation leads to an 
increase in the length of the booking window and 
brings the long waiting for appointments. 
Therefore, in order to shorten outpatients waiting 
time, we limit the length of the booking window 
and we assume the system has a limited slots 
capacity 𝑁 during a limited length of booking 
window. The system capacity 𝑁 can be divided 

into 𝑥 equal amount of slots 𝑏i.e. (𝑏 =  
𝑁

𝑥
 ). The 

slots 𝑏 are termed as a maximum size of a batch of 
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the outpatients appointment and 𝑥 is equal to the 
number of sessions/periods. In practice, the new 
requests for appointments come individually and 
the service can be provided from single patients up 
to the maximum batch size b of the patients. And 
after the first service the patients may opt for 
another service provided by a clinic. On the other 
hand, some patients cancel the appointment and 
those patients are termed as reneging patients. 

Conclusion 

In this paper, we present 𝑀/𝑀[𝑏]/1/𝑁 queue with 
second optional service and reneging in transient 
state. The fourth order Runge Kutta method is used 
to determine the transient solution of the queueing 
model and obtained the transient probabilities of 
the model. We developed the cost analysis to 
determine the optimal service rates of FES and 
SOS. Furthermore, we presented some 
performance measures along with the numerical 
results to show the effect of various system 
parameters on the transient behaviour of the model. 
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