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Abstract
This paper presents a comparative study of EEG-based multiclass motor
imagery classifiers based on Kullback-Leiber regularised Riemann Mean and
support vector machine, hybrid one versus one classifier, linear discriminant
analysis, and convolutional neural network. The paper is felt to be of inter-
est to those researchers working in the motor imagery classification of EEG
signals. The work presented in this paper helps to understand the basics of
different multi-class motor imagery classifiers, their accuracy, and the number
of channels involved.

1. Introduction
In Brain-computer interfacing (BCI), Motor
imagery (MI) is a process in which the human
brain imagines that a person is performing a
movement without actual involvement of peripheral
nerves and muscles and without even tensioning
the muscles. MI-based BCI is an independent
system with higher classification accuracy. The
BCI helps to convert inputs from the brain into
commands or directives due to the user’s desire and
sends them to external devices such as computers
or prostheses. Among various non-invasive BCI
methods, electroencephalography (EEG) is one of
the best methods to record or test brain activity due
to its excellent time resolution and portability and
requires less expensive equipment. Therefore, it is
more convenient and practical to use EEG signals
as input in BCI systems (Wang, S. Gao, and X.
Gao). The BCI system consists of 3 components-
input signal, processing unit, and control command.
The processing unit takes EEG signals as input
signals. The bioelectric signals resulting from

electrical activity in the brain are captured by
EEG equipment (Safitri, Djamal, and Nugraha).
These bioelectric signals captured by EEG signals
need to be classified using a suitable classifier for
further study/processing. Classifiers are helpful
because they enable us to decide whether a left
(or right) hand movement or left (or right) foot
movement command is initiated. Therefore, the
classifier plays a vital role in motor imagery signal
classification (Thang and Temiyasathit Sharbaf,
Fallah, and Rashidi Du, Liu, and Tian). To improve
classification accuracy, the feature extraction tech-
nique is crucial. Feature extraction strategies are
critical for enhancing MI signal classification rates.

In this paper, we have compared EEG-based MI
classification methods and found ways to give good
performance in terms of accuracy, channel count,
and complexity. The organization of the paper is
as follows. In section 2, classification methods that
have been considered for the study have been pre-
sented. Section 3 is dedicated to the observations
and discussion. Finally, section 4 is the conclusion
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section of the paper.

2. Methods for Classification
In this section, we have presented four classi-
fier methods, namely Kullback-Leiber regularised
Riemann mean (KLRRM) (Mishra et al.) in
combination with linear support vector machine
(SVM), Naı̈ve Bayes (NB) (Sharbaf, Fallah, and
Rashidi), linear discriminant analysis (LDA) (Thang
and Temiyasathit), convolutional neural network
(CNN) (Du, Liu, and Tian). Each method has its
advantages, and some are better than others in terms
of channel count used, complexity, the accuracy of
classifiers, etc. The details of the classifiers are as
follows:

2.1. Linear Discriminant Analysis (LDA)
LDA is a linear classifier commonly used to classify
linearly separable data. In LDA, nominal statistics
maximize the likelihood of discrimination between
two classes. LDA can also project high-dimensional
data onto a low-dimensionality feature space (Kim,
S.-K. Lee, and B. Lee). Over the past decades,
LDA has been extensively used to reduce dimen-
sionality, recognize patterns, and classify data. LDA
has been used by Thang and Temiyasathit (Thang
and Temiyasathit) to boost the accuracy of sig-
nal categorization in BCI by using the regulariz-
ing multi-bands common spatial patterns approach
(RMCSP). Using a high number of channels as
recording devices restricts the BCI system. RMCSP
is developed to use EEG for research signals with
fewer channels. Five FIR filters were used to filter
the EEG data into five distinct frequency sections.
The RMCSP technique’s operation has two steps, as
shown in Fig 1.

a) In the first step, five FIR filters were used to
span five different frequency bands, and spectral
characteristics that characterize event-related syn-
chronous events from the brain were extracted using
these filters.

b) The second step learns spatial patterns to dif-
ferent spectral data by regularizing common spatial
patterns. The one versus rest (OVR) CSP approach
is used in this strategy.

The RMCSP filters log variances of features were
employed to input LDA, which is used as the clas-
sifier. The output is then combined from the four-
class classifiers via a voting tactic based on the
majority, which assigns the class label given to the

classifier with the highest likelihood (Thang and
Temiyasathit).

2.2. Naı̈ve Bayes (NB) Classifier
NB classifier consists of a group of classification
methods and is based on the Bayes theorem. The
Bayes theorem determines the probability of a sub-
sequent event based on the probability of a previous
event. Bayesian classifiers work on the basic princi-
ple of probabilistic classification. NB has been used
by Sharbaf et al. (Sharbaf, Fallah, and Rashidi). The
authors recorded the EEG from 22 channels follow-
ing the 10-20 international system with a sampling
frequency of 250 Hz. These signals were band pass
filtered within the 0.5 Hz -100 Hz (also used a 50 Hz
Notch filter). The steps involved in the implementa-
tion of NB classifiers (Sharbaf, Fallah, and Rashidi)
are as follows:

a) Following the least-square linear-phase filter,
the signals were filtered.

b) As part of signal processing, a common spatial
pattern (CSP) was used to distinguish between two
signals based on differences in variance between
them. The common spatio-spectral patterns (CSSPs)
were used to embed an FIR filter into a spatial filter,
and thus new channels were defined for delayed sig-
nals.

c) In shrinkage estimation for covariance matrix
estimation, an estimate is made to minimize the
mean square error by regularizing the covariance
matrix. This method overcomes the disadvantages
of conventional covariance matrix estimation, such
as CSSP and CSP.

d) Mutual information best individual features
(MIBIF) are used to select the relevant features.

e) One vs. one uses multiple classifiers in the
N number class classification; each classifier distin-
guishes from one class to another.

f) To specify the trial’s label if three classes
win equally, the combined OVO extracted charac-
teristics are accustomed to creating an NB classi-
fier (Sharbaf, Fallah, and Rashidi).

g) Six linear SVM and four NB models have been
used for four class classifications without ambiguity.
The architecture is shown in Fig 2.

2.3. Shallow Convolution Network Architecture
For MI task detection and classification, researchers
began to use deep learning techniques like CNN,
which outperformed other traditional approaches. A
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FIGURE 1. Regularizing multi-band CSP architecture (Thang and Temiyasathit)

FIGURE 2. Hybrid architecture of OVO and NB classifier (Sharbaf, Fallah, and Rashidi)

FIGURE 3. The novel CNN architecture (Du, Liu, and Tian)

shallow CNN architecture (Du, Liu, and Tian) was
used with a unique signal-superposed data augmen-
tation strategy to improve classification accuracy.
The shallow CNN architecture (Du, Liu, and Tian)
(Fig. 3) consists of three convolutional layers and
four fully linked layers. The data augmentation
method of superposing and normalizing the signals
of the same labels across people and time is used
to generate new artificial EEG data. This superim-
posed data augmentation strategy can help signals
retain their intrinsic properties while also reducing
signal drift over time and among patients. The clas-

sification result of the shallow CNN design is bet-
ter than the preceding architectures, with an aver-
age accuracy of 91.06% for two-class classification
tasks. The subject, when imagined moving any part
of their body, and EEG data were recorded. Data
augmentation was used to create more training data
using a deep learning model in the training process.
The author performed the following steps:

a) Transforming the real data is done by shift-
ing, scaling, and rotating it. To tackle the problem
of data scarcity, fresh data are generated artificially
from existing training data. This technique is called
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data augmentation.
b) Four fully connected (FC) layers and three con-

volutional layers compose the novel CNN architec-
ture.

c) For each EEG channel, the first layer conducts
a linear pre-filtering as a function along the time
axis.

d) By performing convolution along the axis of
the EEG channel, the second layer can turn down
the effects of the realm unrelated to movements.

e) The next layer provides the most robust archi-
tecture of all the layers.

f) Three layers are applied, linked after the con-
volutional layers, with the first FC layer containing
approximately 6300 neurons. The last FC layer is
the softmax layer, with the input being the data’s
total number of neurons to categorize (Du, Liu, and
Tian).

2.4. Kullback-Leibler Regularized Riemannian
(KLRRM mean and linear SVM

Feature extraction is more robust against noise and
outliers by using Kullback-Leibler regularization.
With KLRRM-based feature extraction, the classi-
fication accuracy is improved for almost all sub-
jects. KLRRM and LSVM frameworks combined to
achieve the highest accuracy for four subjects. Lin-
ear SVM (LSVM) is employed to categorize the data
after calculating the distances to the Riemannian
mean of all four classes. Mishra et al. (Mishra et al.)
used this method to classify four class MI signals. A
highly precise analog-to-digital converter with a 250
Hz sampling rate is used for digitizing the analog
EEG signals. The authors adopted the methodology
described below and also shown in Fig. 4.

a) Butterworth bandpass filter of sixth-order was
used to filter the MI signals in the 8-30 Hz frequency
range.

b) Feature extraction by using the KLRRM
method was performed to improve the classification
accuracy.

c) For all four MI classes, the Riemannian mean
is derived based on regularisation in order to make
feature extraction resilient against outliers.

d) Using the one vs. another mechanism of multi-
class classification, the LSVM is trained. The sub-
test set’s performance is examined using a trained
LSVM and a regularized Riemannian mean matrix.

e) A similar procedure is repeated for all possible

values of β (regularization factor), and the one with
the greatest precision is considered ideal for the sub-
ject of interest. After that, the validation set is used
to test the optimal beta (Q and Temiyasathit).

3. Discussion
In this paper, we have reviewed various EEG-based
multi-class MI classifiers like LDA, LSVM, CNN,
and hybrid one vs. one (OVO). The performance
comparison of these classifiers is summarized in
Table 1. The limitation of conventional OVO is
when more than one class is labeled as the trial
label. This condition arises when multiple classes
have almost equal chances when compared to other
classes. The hybrid OVO classifier system was pro-
posed to overcome this type of limitation. The novel
shallow CNN architecture was proposed to over-
come the limitation of conventional CNN architec-
ture as the conventional architecture is suitable for 2
class classification only, but the Novel CNN archi-
tecture is suitable for four-class classification and
more suitable for real-time brain-computer interface
(BCI) systems and better than some of the traditional
machine learning-based approaches. The limitation
of the BCI system is that it uses a large number of
channels that are used as recording devices. RMCSP
is designed in such a way that it can handle EEG sig-
nals with a smaller number of channels. LDA shows
classification accuracy better than conventional CSP
by 10%. KLRRM framework provides good accu-
racy for poor or noisy channels, which shows its
robustness towards noise and outliers, and at the
same time, it can maintain the accuracy of good
subjects also. The KLRRM and LSVM mechanism
provides better performance for both good and poor
subjects.

4. CONCLUSION
One of the main reasons for the high misclassifica-
tion rate is noise in the EEG data. Classification
of MI signals is a very delicate and complex pro-
cess because the intervention of noise and outliers
are also there, which makes the classification pro-
cess more vulnerable (Brigham and Kumar Zanini et
al.). KLRRM and LSVM are one of the best meth-
ods which take into account the effect of noise and
outliers. According to Mishra et al. (Mishra et al.),
for the four-class classification method, an accuracy
of 74.73% was provided for channels that are not
affected by noise and 51.53% accuracy for noise-
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FIGURE 4. Architecture of KLRRM and LSVM (Mishra et al.)

TABLE 1. Performance comparison
Author Name Pre-processing + feature

extraction+ classifier
Number
of chan-
nels used

Accuracy

Thang and
Temiyasathit (Thang
and Temiyasathit)

FIR filters + Regularising CSP
+OVR CSP + LDA

22 Outperform normal CSP by
10%

Sharbaf et al. (Sharbaf, Fal-
lah, and Rashidi)

FIR filters + CSP+ CSSP+
MIBIF+ hybrid OVO

22 Improvement in kappa score
to 0.61

Du et al. (Du, Liu, and
Tian)

Data augmentation+ CNN 16 average cross-validation
accuracy of (global) 66.73%,
(subject model) 76.78% [for
4 class classification]

Mishra et al (Mishra et al.) Bandpass filter +
KLRRM+MDRM+LSVM

22 74.43% and 51.53% for both
good and noisy channels.

dominating channels which is quite a good result
when we are dealing with such delicate MI signals
where classifiers play a vital role in the overall pro-
cess. The four-class classification method is quite
promising and implementable. This method can be
made more advanced and accurate for a real-time MI
classifier.
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