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Abstract

Deep learning (DL) methods have shown remarkable success in address-
ing various problems across different domains. Classifying DNA sequences
presents a formidable challenge in the field of bioinformatics. This review
delves into various technologies centered around Alignment methods and Deep
Learning for the purpose of classification. The aim is to achieve accurate
and scalable predictions for DNA sequence classification. DL methods have
proven effective in overcoming the primary challenges faced during the train-
ing process. The paper delves into previous classification methods like align-
ment methods and highlights their limitations. Subsequently, we delve into
the application of deep learning, specifically using CNN and RNN models, for
DNA sequence classification. We evaluate their respective accuracies and dis-

cuss the differences and drawbacks associated with these methods.

1. Introduction

Genomic information can be characterized as the
digital repository containing an organism’s genetic
data, primarily composed of nucleotides. These
nucleotides are portrayed through finite sequences
of letters derived from a genetic alphabet, such as
those found in DNA and proteins. Mathematically,
DNA has been represented using character strings,
where each character corresponds to a letter in the
genetic alphabet (Anastassiou). Nucleotides play
a fundamental role as the basic building blocks of
nucleic acids, which consist of a sugar molecule
(such as deoxyribose) and a nitrogen-containing
base (A, C, T, G) (Henderson, Frank, and Pater-
son). Both DNA and RNA are comprised of polymer
chains featuring sequences of nucleotides. DNA is
distinguished by its deoxyribose sugar, while RNA
contains ribose sugar. The DNA structure is char-
acterized by a lengthy sequence of bases, depicted
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as a finite string composed of four letters (A, C, T,
G) (Hartwell et al.).

An illustrative example is
GATCG....ATCGCTGAAGT.

DNA is comprised of two strands that coil into
a double-helix structure, resembling a spiral lad-
der. Consisting of four nucleotide types—adenine
(A), cytosine (C), guanine (G), and thymine (T),
DNA establishes chemical bonds that link the two
DNA strands. Adenine (A) invariably pairs with
thymine (T), while guanine (G) consistently pairs
with cytosine (C), as depicted in Fig. 1. It is note-
worthy that each cell in the body houses a complete
copy of about 3 billion DNA base pairs (Travers and
Muskhelishvili Yang et al.). Genes, which are small
DNA segments, are responsible for storing genetic
information.

ATC-

Bioinformatics involves employing computa-
tional techniques to analyze extensive biological
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FIGURE 1. Structure of DNA (Hartwell et al.)

datasets, encompassing genetic information. Within
this field, biological data is derived through the
amalgamation of biological data, informatics data,
and mathematical data. This combined dataset is
then referred to as biological data, and it is analyzed
within the framework of bioinformatics (Luscombe,
Greenbaum, and Gerstein). This approach involves
the summarization and comprehension of the char-
acteristics and hierarchy of biological information.
Bioinformatics utilizes computational analysis of
biological data, specifically DNA sequences, to
achieve various goals. A primary task involves
comparing new DNA sequences with a well-known
database using a similarity function to predict their
respective groups. (Xiong) EBWS offers diverse
tools for DNA sequence operations on a new PHP-
based server (Kaloudas, Pavlova, and Penchovsky).
Taxonomy (Dunn and Everitt Godfray and Charles)
involves classifying Biological Organisms based on
comprehend them.

Short tandem repeats, often abbreviated as STRs,
are brief DNA sequences with fewer than 400 base
pairs, which makes them particularly advantageous
(see Figure 2). Classifying DNA sequences plays
a crucial role in genomics, as it enables the pre-
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diction of the DNA’s classification, which is invalu-
able in the medical field for identifying viral infec-
tions. Given the vast number of viruses, such
as HIV and COVID-19, which exceed 1.6 mil-
lion, it becomes essential to label and determine
the virus’s name based on the DNA sequence. To
accomplish this, the DNA sequence is compared
against the Gen Bank database provided by the
NCBI. The Gen Bank database is a repository of
DNA sequences, encompassing more than 106 bil-
lion nucleotide bases (Reid et al.). Short Tandem
Repeats, or STRs, serve as repositories for repeat
units with lengths ranging from 2 to 6 base pairs
and are frequently amplified using the polymerase
chain reaction. Owing to their minimal DNA quan-
tity requirements, STRs have gained popularity in
forensic laboratories and are widely utilized in bio-
logical research due to their polymorphic nature and
high mutation rates. These sequences are alterna-
tively known as microsatellites or simple sequence
repeats.

Short tandem repeats (STRs) can be categorized
into various types according to the repeat unit’s char-
acteristics. For instance, they can be categorized
according to the major repeat unit length, leading
to classifications such as mono, di, tri, tetra, penta
and hexa-nucleotide repeats (Reid et al.). Currently,
these STR markers are utilized in the development
of the FBI Combined DNA Index System, which
constitutes an extensive DNA database covering a
jurisdiction (Ruitberg et al.).

ATGCATGCATGCATGCAGTCGTACAGTATGAT

( Short sequence of "ATGC")

ATGCATGCATGCATGC

( Tandem repeats )

ATGCATGCATGCATGCAGTCGTACAGTATGAT

( Repeatedly present in to the sequence )

FIGURE 2. Short Tandem Repeats (STR) (Reid
et al.)

CODIS, the Combined DNA Index Sys-
tem, stands as one of the paramount tools
for locating, identifying, and classifying DNA
sequences (Penacino). This system is a versatile
software that serves the purpose of constructing a
DNA database, consisting of three specific index
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types: LDIS, SDIS, and NDIS (Jovanovic¢). LDIS
is administered at the local city level, SDIS at
the state agency level, and NDIS by the Federal
Bureau of Investigation (see Figure 3). Within
the CODIS software, numerous databases are
integrated for information retrieval concerning
missing individuals and convicted offenders. It’s
crucial to emphasize that CODIS does not store any
personally identifiable information associated with
the DNA profiles.

CODIS functions primarily as a valuable tool for
generating investigative leads in cases where biolog-
ical evidence is collected from crime scenes. It oper-
ates through two distinct indexes: the forensic index,
which contains DNA profiles derived from evidence
collected at crime scenes, and the offender index,
which houses DNA profiles of individuals con-
victed of sex offenses (and in some states, extended
to include other felonies) (Penacino). Within the
CODIS software, multiple databases are designed
for various information searches, encompassing data
on missing persons and convicted offenders.

DNA sequences are archived with a *.DNA’
extension (Jovanovi¢). Various file formats have
been developed to facilitate the storage, manipu-
lation, analysis, and comparison of nucleotide and
protein sequences. Notable formats include Plain
sequence format, FASTA format, FASTQ format,
GCG format, GCG — RSF (Rich sequence for-
mat), and EMBL format (Graham and Faulds). The
FASTA format and FASTQ format serve as stan-
dardized means for sequence data storage. The
FASTA format is used when raw sequence data
is required, while the FASTQ format is employed
when there is a need for quality-related information
about the DNA sequence (Shen et al.).

The Plain sequence format comprises a sequence
containing solely nucleotide bases and spaces. This
format does not permit the inclusion of num-
bers or additional information regarding the DNA
sequence. One limitation of the plain sequence for-
mat is that it can accommodate only a single DNA
sequence within a given DNA sequence file.

Example:

ATCTAGTCCTGATAGAT-

GACGATGACGATCAGTT-

AGGTCTAGTCCTGAATCTA-

GTCCTGGATCTAGTCCT-

GACGATACGATCAAGTCCT-
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GGATCTAGTCTACGATCAT

FASTA Format: The FASTA Format utilizes a
distinct sequence ID known as the FASTA defini-
tion line, marked by the greater-than (”>") sym-
bol for each sequence. This text-based format
is commonly utilized to archive DNA sequences,
and a single sequence file may encompass multi-
ple DNA sequences, often using file extensions such
as *.FASTA’ or ’fna’. Below is an example of a
sequence presented in the FASTA format (Pearson).

Example:

>Sequencel-id description ATC-
GATAACGTGCTGAGTAGTGTGACTGTATC-
GATAACGTGCTGAGTAGTGTGAATAAGT-
GCATAACGTGCTTC

>Sequence2-id description GCTGAG-
TAGTGTGAATCGATAACGTCGATAAC-
CTGTATGTGCTGAGTAGTAACGTG-
CATAACGTGCTTCTGAATA

FASTQ format: FASTQ stands as a text-
based format employed for the storage of bio-
logical sequences, especially those generated by
high-throughput sequencing instruments (Wski).
Sequences in the FASTQ format are structured
across four lines. The initial line commences with
the *@’ character and incorporates a sequence iden-
tifier, optionally accompanied by a description. The
second line contains the unprocessed sequence let-
ters. The third line commences with a ’+’ symbol,
accompanied by a description. Lastly, the fourth
line contains the quality values corresponding to
the sequence presented in second line (Shen et al.
Wski).

Example: @SEQ_ID

AGTAGTGTG...TGTGCTGA+(The quality val-
ues for the sequence are encoded as in Line2)

GCG Format: The term GCG refers to Genet-
ics Computer Group format, and it is designed
to hold precisely one sequence within a single
file (Womble). The sequence initiates with anno-
tation lines encompassing information such as the
sequence identifier, sequence length, and a check-
sum. Following the annotation lines, there are two
dots (”..”) indicating the sequence’s commencement.
It is important to note that GCG-format sequence
files are exclusively generated using the GCG pack-
age (Shen et al. Dolz).

Example: ID (Description) AGTAGT-
GTGAATCGATAACGTCGTGTGT-
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Mational
NDIS DMA
Database
State State State
sSDIs DMA DNA DNA
Database Database Database
Local Local Local
LDIS DMA DNA DA
Database Database Database

FIGURE 3. CODIS (Jovanovic)

GAATCGATAACGTCGAGTTGTGAATC-
GATAACGTCGCGTCG

The Nucleotide Archival Format (NAF) is a
unique file format designed specifically for the loss-
less compression of nucleotide sequences presented
in FASTA and FASTQ, without the need for any ref-
erences (Kryukov et al.).

1.1. Motivation:

Classification methods for DNA using Machine
Learning and Deep Learning techniques exhibit
distinct characteristics. =~ Machine Learning may
encounter challenges in handling intricate patterns,
while Deep Learning, employing Recurrent Neu-
ral Networks (RNN) and Convolutional Neural Net-
works (CNN), excels in managing extensive DNA
datasets and capturing intricate features. This effi-
ciency disparity primarily arises from architectural
differences, with CNN being suitable for image-
driven tasks and RNN for handling sequential data
like DNA sequences.

The important objective of this study is to unfold
the application of Deep Learning-based methods
for sequence classification and comprehend their
functioning. The research aims to assess exist-
ing DNA classification techniques, which include
alignment based approaches, alignment free meth-
ods, and combinations involving DSP and machine
learning, with a focus on identifying critical limi-
tations. The introduction of Deep Learning meth-

ods for DNA classification is expected to enhance
accuracy compared to other methodologies. Addi-
tionally, the study delves into DNA sequence pre-
processing for classification models.

The research investigates two Deep Learning
architectures, namely CNN (Convolutional Neu-
ral Networks) and RNN (Recurrent Neural Net-
works), each based on distinct computational mod-
els designed for DNA sequence classification. The
16S rRNA dataset from RDP 11 is employed for
classification purposes. DNA sequences are stored
with the >.DNA’ extension and can be selected
from a range of formats, including Plain sequence,
FASTA, GCG, GCG - RSF, and EMBL, for DNA
database storage.

Lastly, the study examines the efficiency and chal-
lenges associated with deep neural architectures in
the classification of DNA sequences in the field of
bio informatics.

2. Literature Review:

[Anastassiou et al., 2001] Genomic information
is inherently digital, typically manifested as finite
sequences containing the bases A, T, G, and C, as
observed in DNA. Analogous to DNA and proteins,
these sequences are often represented mathemati-
cally as character strings, where each character cor-
responds to a letter in an alphabet.

[Henderson et al., 2014] Nucleotides play a foun-
dational role as the building blocks of nucleic
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acids, incorporating sugar molecules like ribose and
deoxyribose.

[Hartwell et al., 2018] Polymers take shape
through extended chains of nucleotides, and both
DNA and RNA, as such polymers, are constructed
from these prolonged sequences of nucleotides.
These nucleotides are composed of letters within an
alphabet.

[Travers et al., 2015] DNA exhibits a unique
structure, characterized by two strands that wind
together into a spiral ladder known as a helix.
Nucleotides connect to each other in what is referred
to as a base pair, forming a connection between dou-
ble DNA strands.

[Yang et al., 2020] In this work the DNA
sequence is constructed using 4 types of deoxyri-
bose nucleotides, which are commonly denoted as
bases. These nucleotides bond together through
chemical interactions, with adenine pairing with
thymine and guanine with cytosine.

[Luscombe et al., 2001] Bioinformatics is the
application of computational techniques for analyz-
ing vast datasets pertaining to biomolecular infor-
mation. It proves to be a valuable tool for unravel-
ling intricate biological data, encompassing genetic
codes.

[Xiong et al., 2006] Biological data is meticu-
lously generated for molecular analysis by leverag-
ing the combined forces of Mathematics, informat-
ics, and biology.

[Kaloudas et al., 2018] The Essential Bioin-
formatics Web Services (EBWS) implementation
caters to the analysis of polymers such as RNA and
DNA sequences. The server offers a range of web-
based applets for conducting various types of analy-
Sis.

[Dunn et al., 2004] Taxonomy is the system-
atic process of organizing and classifying groups of
organisms based on their distinctive characteristics.

[Godfray et al., 2002] The utility of taxon-
omy extends to organizing and indexing knowledge
stored in various forms, such as documents and pho-
tos.

[Reid et al., 2013] Short Tandem Repeat (STR)
is a straightforward molecular technique utilized
for DNA profiling in human cells. Its abbrevi-
ated sequence length makes it an ideal candidate for
Polymerase Chain Reaction (PCR). The incorpora-
tion of STR in cell culture management can sig-
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nificantly improve the detection of cellular cross-
contamination, leading to more precise assays.

[Ruitberg et al., 2001] Short Tandem Repeats con-
sist of repeat units ranging from 2 to 6 base pairs in
length. Due to their low DNA quantity requirement,
STRs can be easily amplified using the polymerase
chain reaction, making them a preferred choice in
forensic laboratories.

[Fan et al., 2007] Short Tandem Repeats are
concise, tandemly repeated DNA sequences with
a repetitive unit typically spanning 1-6 base pairs.
Also known as microsatellites or simple sequence
repeats, STRs play versatile roles in molecular biol-
ogy.

[Penacino et al., 2006] CODIS is employed
in criminal investigations involving biological evi-
dence retrieved from crime scenes, utilizing two
indexes: the forensic and offender indexes.

[Jovanovié, 2021] CODIS, functioning as a DNA
database system, emerges as a pivotal tool for iden-
tifying perpetrators through comprehensive DNA
analysis.

[Jeffery et al., 2012] DNA extension is employed
for the efficient storage of DNA sequence files.

[Shen et al., 2016] The recognized standards for
storing sequence data are FASTA and FASTQ.

[Graham et al., 2008] This study outlines various
sequence storage formats of DNA, including FASTA
format, Plain sequence format, EMBL format, GCG
format, and GCG-RSF (Rich sequence format).

[Pearson et al., 1994] A sequence file formatted in
FASTA can accommodate multiple sequences, with
each sequence initiating with a single-line descrip-
tion marked by the symbol ‘>’.

[Deorowicz et al., 2011] The FASTQ format, a
text-based structure for nucleotide sequences like
DNA and their corresponding quality scores, sup-
ports multiple files and sequences. Each entry
begins with a single-line description starting with
the symbol *@’.

[Womble et al., 2000] The GCG format functions
as a tool for manipulating, analyzing, and comparing
nucleotide and protein sequences, with GCG repre-
senting Genetics Computer Group.

[Dolz et al., 1994] and [Kryukov et al., 2019]
These papers elaborate on the Nucleotide Archival
Format (NAF), a novel file format designed for the
lossless, reference-free compression of nucleotide
sequences formatted in FASTA and FASTQ.
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[Anderson et al., 1998] This paper introduces a
tool for searching DNA sequences.

[Schmieder et al., 2011] Describing an applica-
tion that provides graphical guidance and performs
filtering, reformatting, and preprocessing of DNA
sequences, this paper explores practical aspects of
DNA sequence manipulation.

[Blankenberg et al., 2010] This paper outlines a
pipeline for manipulating next-generation sequenc-
ing data extracted from a sequencing machine,
encompassing all steps through quality filtering.

[Saima et al., 2021] This work compares align-
ment based methods, alignment free methods and
Deep Learning (DL) methods (such as RNN and
CNN) for DNA classification. DL proves to be
effective but demands a substantial amount of data.

[Armstrong et al., 2019] This paper provides a
succinct survey of genome alignment and multi-
ple alignment methods for classification, offering
insights into the current state of the genome align-
ment and comparative annotation fields.

[Eisenhofer et al., 2019] The study assesses
four distinct reference databases, demonstrating that
nucleotide-to-nucleotide alignments using MAL Tn
can faithfully replicate simulated metagenomes,
even when dealing with short reads and elevated
deamination levels. The research emphasizes the
crucial role of database selection, underlining its
significance for emerging researchers in the field of
paleo microbiology.

[Altschul et al., 1990] This research introduces
the fundamental alignment search tool, highlighting
BLAST’s significant speed advantage over existing
sequence comparison tools while maintaining com-
parable sensitivity.

[Lipman et al., 1985] The study outlines an algo-
rithm for identifying similarities between newly
determined amino acid sequences and those already
available in databases.

[Thompson et al., 1995] This paper delves into
the improvement of the multiple sequence alignment
method for aligning divergent nucleotide sequences.
Individual weights are assigned to each sequence,
and amino acid substitution matrices are adjusted at
different alignment stages based on the sequences’
divergence.

[Nagla et al., 2020] This research explores the
advantages and limitations of the alignment-based
method for DNA sequencing.

International Research Journal on Advanced Science Hub (IRJASH)
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[Domazet-LoSo et al., 2011] The study presents
a method based on matches between two DNA
sequences, where the number of matches indicates
close homology. The authors implemented a pro-
gram called alfy (Alignment-Free local homology),
demonstrating its efficiency in accurately detect-
ing recombination breakpoints in simulated DNA
sequences. The application of alfy to Escherichia
coli genomes reveals new evidence supporting a
hypothesis.

[Remita et al., 2017] This Paper introduces CAS-
TOR, a classification platform based on machine
learning. The research assesses CASTOR’s perfor-
mance in classifying diverse datasets, and the CAS-
TOR web platform provides an open-access, collab-
orative, and reproducible environment for machine
learning classifiers.

[G. E. Sims et al., 2011] This study presents the
Feature Frequency Profiles (FFPs) alignment-free
method, utilizing the frequencies of I-mer features
in entire genomes to infer phylogenetic distances. It
identifies distinctive features for clade classification,
offering valuable insights into group evolution.

[Fan et al., 2021] This study outlines the fun-
damentals of deep learning, a subset of machine
learning that focuses on autonomous learning and
improvement. Deep learning employs artificial neu-
ral networks designed to simulate human thinking
and learning, in contrast to the simpler concepts
relied upon by traditional machine learning.

[Chauhan et al., 2018] The work here introduces
the distinction between conventional machine learn-
ing and deep learning, presenting a comparative
analysis of various machine learning approaches
such as SVM, PCA, LDA, and decision trees.

[Lauzon et al., 2012] This study briefly describes
deep learning approaches and provides evidence that
a deep learning approach allows for better classifica-
tion compared to popular classifiers based on hand-
crafted features.

[Tabar et al., 2016] The study introduces deep
learning methods to enhance the classification per-
formance of EEG motor imagery signals. It inves-
tigates the use of convolutional neural networks
(CNN) and Stacked Autoencoders (SAE) for clas-
sifying EEG Motor Imagery signals.

[Hussain et al., 2018] In this work, a CNN archi-
tecture model is established to assess its effective-
ness in terms of accuracy and efficiency with new
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image datasets through Transfer Learning. The
retrained model is evaluated, and its performance is
compared to some state-of-the-art approaches.

[Albawi et al., 2017] This paper delves into the
issues and impacts associated with each parameter
of Convolutional Neural Network (CNN). The per-
formance of CNN is contingent on the number of
levels, and as this number increases, the output time
of levels also rises.

[Zewen et al., 2021] This review introduces the
history of CNN, providing an overview of vari-
ous convolution techniques. It explores advanced
CNNis that achieve state-of-the-art results, highlight-
ing essential considerations for function and hyper-
parameter selection.

[Yamashita et al., 2018] Convolutional Neural
Networks (CNN) stand out as powerful models
employed in computer vision tasks, particularly in
medical image analysis within radiology. They
exhibit capabilities in classifying images, detecting
objects, and segmenting regions of interest. Chal-
lenges in radiology encompass limited data, inter-
pretability, and data privacy.

[O’Shea et al., 2015] This study provides a con-
cise introduction to CNNs, discussing the architec-
ture of CNN networks. CNNs consist of neurons
that self-optimize through learning, with each neu-
ron receiving an input and performing a specific
operation.

[Mathew et al., 2020] This work describes
the evolution of deep learning, exploring various
approaches and architectures of deep learning along
with their applications.

[Yong et al., 2019] This study explains the state
of the art in deep learning, offering both current
insights and a historical perspective. [Lo Bosco
et al., 2016] The study compares two deep learn-
ing architectures for automatically classifying bacte-
rial species. CNNs demonstrate proficiency in sim-
pler tasks but exhibit lower performance in more
complex tasks, where Long Short-Term Memory
(LSTM) networks prove more effective.

[Rizzo et al., 2015] This work explores a classifier
designed for 16S bacterial genomic sequences, inte-
grating spectral representation and Convolutional
Neural Networks (CNN). CNNs demonstrate strong
performance on small datasets, achieving high accu-
racy levels ranging between 95% and 99% for full-
length data.

2023, Vol. 05, Issue 11 November

[Nguyen et al., 2016] This study introduces an
innovative approach to classifying DNA sequences
utilizing Convolutional Neural Networks. One-hot
vectors are utilized to represent sequences as input
to the model, treating the sequences as textual data.

3. Common Stages of DNA Sequencing:

Downloaded DNA sequences from sources often
manifest low-quality DNA sequences, sequence
artifacts, and contamination issues, resulting in inac-
curate sequencing outcomes. Therefore, it is crucial
to preprocess DNA sequence data before inputting it
into the classification model to determine the class
level of the DNA sequence [25].

3.1. Preprocessing:

Various applications offer features specifically
designed for preprocessing sequence datasets. Each
application is tailored to handle short read data and
can accommodate longer read sequences, providing
a range of additional features and functions. Dur-
ing this stage, the DNA sequences obtained from
the source undergo preprocessing before being fed
into the classification model. Preprocessing involves
data-related tasks such as cleaning, transforming,
and reducing the sequences [26, 27].

3.2. Feature Extraction:

The next stage in DNA classification is feature
extraction, which entails identifying the most per-
tinent information from the DNA sequence utilizing
diverse DNA storage formats. These features serve
to construct the most appropriate representation of
the input data, encapsulating essential characteris-
tics derived from the raw DNA data.

ATGCGCTGATGACGTAGATCA

N A N IS
ATCGCTAGTACTAGTCATACA

No. of Match =7 (No of Vertical Line)
No. of Dismatch = 14 (No. of Colon)

FIGURE 4. Alignment-based DNA sequence
analysis (Eisenhofer and Weyrich)
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3.3. Training:

In this phase, the DNA classification undergoes the
training process to generate the most accurate pre-
dictions possible based on the DNA sequence.

3.4. Classification:

During this stage, the DNA sequence data is pre-
pared to be input into the classification model for
predicting the classified data.

4. Sequencing Methods for DNA Analysis:
4.1. Alignment Method:

Various alignment methods with distinct char-
acteristics will be explored, encompassing both
Alignment-based and Alignment-free approaches.
The alignment of DNA sequences plays a piv-
otal role in numerous molecular biological analy-
ses, posing a fundamental challenge in genomics.
These methods involve mapping the letters of a
set of sequences to approximate specific relation-
ships. At the sequence level, the comparison of new
sequences involves genome alignment and compara-
tive annotation at the gene level. Presently, there are
hundreds of publicly available vertebrate genome
assemblies (Armstrong et al.).

4.2. Alignment-Based Method:

Alignment based techniques are utilized for DNA
sequence classification. This method depends on
identifying base-to-base matches in two or more
sequences, calculating a score based on the num-
ber of matches and mismatches between sequences
(Fig. 4). By doing so, they ascertain the class
of a given query sequence by identifying the most
similar sequence in the known set (Eisenhofer and
Weyrich). Several alignment-based tools, such as
BLAST (Altschul et al.), FASTA (Lipman and Pear-
son), and MUSCLE (Thompson, Higgins, and Gib-
son), are accessible. However, Alignment-based
methods have limitations as they do not lever-
age location information for a sequence within the
genome. These methods entail high time-memory
computational costs, relying on each nucleotide and
necessitating continuous sequences of nucleotides
for matching. Additionally, sequence comparisons
based solely on alignments can be challenging, par-
ticularly when aligning numerous brief reads from
different components of the genomes (—alhalem et
al.).

International Research Journal on Advanced Science Hub (IRJASH)
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4.3. Alignment- Free Method:

The alignment based method does not yield sat-
isfactory results for the ever-expanding volume of
genomic data. This is attributed to the increas-
ing diversity of genomic data types. Recognizing
the need for location information in DNA sequenc-
ing, the alignment-free method addresses the chal-
lenges associated with substring alignment. This
review paper explores diverse alignment-free meth-
ods utilized in DNA sequence analysis, encom-
passing k-Mer/word frequency, common substring
length, spaced word matches, micro-alignments,
information theory related methods and graphic rep-
resentation. These approaches find applications in
clustering and classifying sequences, with examples
of alignment-free software applications like CAS-
TOR and FFP provided [34, 35, 36]. However, it is
crucial to acknowledge that alignment-free methods
face limitations, including issues with memory over-
lapping and a scarcity of implementation software.

Fully
Connected

O

Convolution

Poolingr’__.-»-"’" _ Output

o
O
\ A\ )

Feature Extraction

Classification

FIGURE 5. Convolution Neural Network Archi-
tecture (Yamashita et al.).

5. Deep Learning(DL) :

Deep learning, as a subset of machine learning,
emulates the functioning of the human brain by
employing neural networks. These networks extract
significant features from raw data to perform classi-
fication tasks. Deep learning possesses the capabil-
ity to enhance itself by scrutinizing computer algo-
rithms (Fan, Ma, and Zhong).

In various computer vision applications, archi-
tectures such as deep neural networks, reinforce-
ment learning, and recurrent neural networks have
demonstrated remarkable results, occasionally sur-
passing human expert performance (Chauhan and
Singh Lauzon and Quintal). Domains like image
processing, including speech recognition, face
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recognition, object detection, and biomedical appli-
cations, have experienced enhanced accuracy due to
deep learning methods. In comparison to other state-
of-the-art approaches, deep learning consistently
provides superior classification performance (Tabar
and Halici).

5.1. Convolution Neural Network:

The Convolutional Neural Network (CNN) emerges
as an impressive form of Artificial Neural Network
architecture, particularly adept at addressing image-
driven pattern recognition tasks. With numerous
connections and layers, CNN operates in a manner
akin to the human brain. It falls under the category
of Deep Neural Networks, excelling in recogniz-
ing and classifying features from images (Yamashita
et al.). CNN takes images as input, finding appli-
cations ranging from image and video recogni-
tion to image classification, medical image analy-
sis, computer vision, and natural language process-
ing (Hussain, Bird, and Faria).

The CNN architecture comprises two main
stages: Feature Extraction and Classification. In
the Feature Extraction stage, diverse features are
derived from input images through convolution
mathematical operations utilizing a specific filter
size M X M (O&apos;shea and Nash). As the filter
traverses the input image, the dot product is com-
puted between the filter and corresponding parts of
the input image, matching the filter’s size M X M.
The resulting convolution output is then directed to
the subsequent Fully Connected (FC) layer, inte-
grating weights, biases, and neurons that establish
connections between different layers, preparing the
output for classification (Li et al.). The convo-
lution layer plays a pivotal role in CNN by exe-
cuting the essential task of feature extraction, con-
suming a significant portion of the network’s pro-
cessing time. The network’s performance is con-
tingent on the number of layers, with an increase
potentially leading to prolonged training and test-
ing times. The activation function also stands out
as a critical parameter in the CNN model (Albawi,
Mohammed, and Al-Zawi Yamashita et al.).

5.2. Recurrent Neural network:

Recurrent neural networks (RNN) represent a dis-
tinctive architecture in Deep Learning, character-
ized by feedforward neural networks augmented
with edges to capture sequence dynamics through
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cycles in the network of nodes. RNNs are com-
monly employed in tasks involving sound or sequen-
tial data, such as speech recognition, natural lan-
guage processing, and sentiment analysis. These
networks are dynamic, with their state continuously
evolving until equilibrium is reached. Distinguish-
ing themselves from Feedforward Neural Networks
(FFNNSs), Recurrent Neural Networks (RNNs) allow
for feedback between nodes. The computation of
each hidden node involves a joint calculation of the
input value and the information generated in preced-
ing nodes [46, 47].

Various versions of RNN exist, and one of them is
the Long Short-Term Memory (LSTM), designed to
address the vanishing gradient problem commonly
encountered in basic RNNs (Sherstinsky). LSTMs
incorporate components known as “gates” to miti-
gate the vanishing gradient issue. Another notewor-
thy variant, the Hopfield network, utilizes bidirec-
tional connections between nodes and is applied to
solve various mathematical problems, such as the
traveling salesman problem. LSTM networks can be
broadly classified into two types: LSTM-dominated
networks and integrated LSTM networks (Yu et al.).

6. Deep Learning Networks for DNA Sequence
Classification:

6.1. CNN DNA Sequence Classification

In the architecture of the Convolutional Neural
Network (CNN), the initial layer incorporates an
embedding layer that takes DNA sequence data as
input and undergoes a transformation, rendering it
into a 2D image via one-hot encoding (Nguyen et
al.). Above this input layer, two subsequent lay-
ers consist of convolutional layers, each followed
by a max-pooling layer. These convolutional layers
employ filters of size 5, with a progressive increase
in the number of filters—specifically 10 and 20,
respectively. The width and stride of the pooling
layers both extend across 5 timesteps, treating a one-
hot vector as a single unit. Stacked on these convo-
lutional layers are two fully connected layers. The
first layer comprises 500 units and utilizes the tanh
activation function, in harmony with the activation
employed in the lower levels. The second layer
functions as the classification layer, employing the
Soft Max activation (LLobosco and Gangi Rizzo et
al.).
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FIGURE 6. RNN -Recurrent neural networks (Mathew, Amudha, and Sivakumari)

6.2. RNN DNA Sequence Classification:

The Recurrent Neural Network comprises six layers,
taking input in the form of one-hot encoding vectors.
The initial layer includes an embedding layer, suc-
ceeded by a max-pooling layer with a size of 2. This
max-pooling operation reduces computational load
and introduces translational invariance to the net-
work. Following max-pooling, a Long Short-Term
Memory (LSTM) model serves as a recurrent layer.
The LSTM processes input from left to right, gen-
erating a 20-sized output vector at each time step.
Subsequent to the LSTM layer, another max-pooling
layer is incorporated to extract class-level informa-
tion. In the subsequent level, bidirectional Long
Short-Term Memory is employed to enable the neu-
ral network to process sequence information in both
directions, backward and forward.

7. Observation and Conclusion:

In this extensive investigation, a meticulous selec-
tion process was employed to categorize a total
number of sequences into five taxonomic ranks:
Phylum (the most coarse-grained), Class, Order,
Family, and Genus (finer-grained). The resulting
classes exhibited variability, ranging from a min-
imum of 3 classes (Phylum) to a maximum of
393 classes (Genus). The intermediate levels of
Class, Order, and Family encompassed 6, 22, and
65 classes, respectively.

In the context of alignment methods, alignment-
based approaches are found to be straightforward
for implementation but are suitable primarily for
small datasets, demanding considerable processing
time for limited data. In the realm of deep learning-
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based models, in single-task scenarios, CNN outper-
forms RNN. However, in multi-task situations, RNN
demonstrates superior performance and reduced
training time. CNN achieves optimal results for
small, closely related datasets, with accuracy levels
ranging between 95-99% for entire length data.

Multitask learning significantly influences mod-
els in terms of both performance and training time,
making LSTM a preferred choice. Among CNN,
CNN-LSTM, and CNN-bidirectional LSTM, CNN
and CNN-Bidirectional LSTM with K-Mer encod-
ing achieve high accuracy, standing at 93.16% and
93.13%, respectively. Evaluation metrics such as
precision, recall, sensitivity, and specificity were
taken into consideration.

It is crucial to note a limitation of deep learning,
emphasizing its reliance on substantial data avail-
ability for effective training, shining most brightly
in scenarios with abundant training data.
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