• Register
  • Login

International Research Journal on Advanced Science Hub

  1. Home
  2. Study on the Effect different materials in Traffic signal pole using numerical simulation approach

Current Issue

By Issue

By Author

Author Index

Keyword Index

About Journal

News

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

Advertising policy

Editor and Reviewer guidelines

Digital Archiving & Preservation Policy

Copyright Terms

Licensing Terms

Editorial Process - Peer Reviewed

Study on the Effect different materials in Traffic signal pole using numerical simulation approach

    Authors

    • Naveenkumar C 1
    • Praveenkumar M 2
    • Praveenkumar S 2
    • Karthik V 2
    • Parthasarathy . 2

    1 Department of Mechanical engineering Mahendra Engineering College, Namakkal, Tamilnadu, India

    2 Department of Mechanical engineering SNS college of technology, Coimbatore, Tamilnadu, India

,

Document Type : Research Article

10.47392/irjash.2019.06
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

Traffic signal poles play a role of mitigating traffic congestions in cities. It slender structure which is usually characteristics with high deformation. It is exposed to load, various environmental factor and natural hazards. The aspiration of modal analysis in structure mechanics is to negotiate the natural frequency of an object or structure in times of free vibration. Conventional poles are replaced with I and T section by applying various material such as structural steel (SS), stainless steel (STS) and grey cast iron (CI). By predicting the ultimate section with low deformation. The ultimate material is endowed and fracture behaviour is prompt, substitute crack is inserted in the maximum stress spot and life cycle of the ultimate material section is deliberate.

Keywords

  • traffic poles
  • modal analysis
  • natural frequency
  • fracture analysis
  • crack
  • life cycle
  • XML
  • PDF 715.17 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
References
1. Li, Z., Shahidehpour, M., Bahramirad, S., & Khodaei, A. (2017). Optimizing Traffic Signal Settings in Smart Cities. IEEE Transactions on Smart Grid, 8(5), 2382– 2393.
2. McKenney, D., & White, T. (2013). Distributed and adaptive traffic signal control within a realistic traffic simulation.
3. Engineering Applications of Artificial Intelligence, 26(1), 574–583.
4. Ng, K. M., Reaz, M. B. I., & Ali, M. A. M. (2013). A review on the applications of petri nets in modeling, analysis, and control of urban traffic. IEEE Transactions on Intelligent Transportation Systems, 14(2), 858–870.
5. Salman, A. M., & Li, Y. (2016). Agedependent fragility and life-cycle cost analysis of wood and steel power distribution poles subjected to hurricanes. Structure and Infrastructure Engineering, 12(8), 890–903.
6. Soh, A. C., Marhaban, M. H., Khalid, M., & Yusof, R. (2007). Modelling and Optimisation of a Traffic Intersection Based on Queue Theory and Markov Decision Control Methods. In Proceedings - 1st Asia International Conference on Modelling and Simulation: Asia Modelling Symposium 2007, AMS 2007 (pp. 478–483)
7. Agyekum‐ Mensah, G., Knight, A., & Coffey, C. (2012). 4Es and 4 Poles model of sustainability. Structural Survey, 30(5), 426–442.
8. Boone, F. R. (1988). Weather and other environmental factors influencing crop responses to tillage and traffic. Soil and Tillage Research, 11(3–4), 283–324.
9. Rilett, L. R., & Benedek, C. M. (1994). Traffic assignment under environmental and equity objective. Transportation Research Record: Journal of the Transportation Research Board, 1443, 92–99.
10. Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research.
11. Factors, R., Road, F. O. R., & Injuries, T. (2009). Risk factors for road traffic injuries. Asociatia Victimelor Accidentelor de Circulatie Din Romania, 7(2), 23–39.
12. Lankarani, K. B., Heydari, S. T., Aghabeigi, M. R., Moafian, G., Hoseinzadeh, A., & Vossoughi, M. (2014). The impact of environmental factors on traffic accidents in Iran. Journal of Injury and Violence, 6(2), 64–71.
13. Stolarski, T., Nakasone, Y., & Yoshimoto, S. (2006). Engineering Analysis with ANSYS Software. Engineering Analysis with ANSYS Software.
14. Fleischmann, M., Knippers, J., Lienhard, J., Menges, A., & Schleicher, S. (2012). Material behaviour: Embedding physical properties in computational design processes. Architectural Design, 82(2), 44– 51.
15. Le, T., Abolmaali, A., Ardavan Motahari, S., Yeih, W., & Fernandez, R. (2008). Finite element-based analyses of natural frequencies of long tapered hollow steel poles. Journal of Constructional Steel Research, 64(3), 275–284.
16. Mohanty, P. (2005). Identifying Mode Shapes and Modal Frequencies by Operational Modal Analysis in the Presence of Harmonic Excitation. Experimental Mechanics, 45(3), 213–220. https://doi.org/10.1177/0014485105054577 17. He, J., & Fu, Z.-F. (2001). Modal Analysis. Modal Analysis,
17 He, J., Fu, Z.- F., & Fu, H. H. Z.-F. (2001). Modal Analysis. Modal Analysis (Vol. 117).
18. Schwarz, B. J., & Richardson, M. H. (1999). Experimental Modal Analysis. CSI Reliability Week, 35(1), 1–12.
19. Huang, Y.-S., & Su, P.-J. (2009). Modelling and analysis of traffic light control systems. IET Control Theory & Applications, 3(3), 340–350.
20. Li, L., Jin, X., Li, Y., & Wei, J. (2005). A parallel solver for structural modal analysis based on commercial FEA code. International Journal of Advanced Manufacturing Technology.
21. Batel, M. (2002). Operational Modal Analysis - Another Way of Doing Modal Testing. Sound and Vibration, 36(August), 22–27.
22. Yu, Y., Zhang, S., Li, H., Wang, X., & Tang, Y. (2017). Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS. In Procedia Engineering (Vol. 174, pp. 956–964).
23. Rieger, N. (1986). Relationship between finite element analysis and modal analysis. Sound & Vibration, 16–31.
24. Szolwinski, M. P., & Farris, T. N. (1996). Mechanics of fretting fatigue crack formation. Wear, 198(1), 93–107.
25. Ritchie, R. O. (1999). Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids. International Journal of Fracture, 100, 55–83.
26. Ayhan, A. O., Kaya, A. C., Loghin, A., Lafken, J. H., McClain, R. D., & Slavik, D. (2003). Fracture Analysis of Cracks in Orthotropic Materials Using ANSYS. GE Global Research, (December), 1–9.
27. Ozkan, U., Kaya, A. C., Loghin, A., Ayhan, A. O., & Nied, H. F. (2006). Fracture analysis of cracks in anisotropic materials using 3DFAS and ANSYS®. American Society of Mechanical Engineers, Applied Mechanics Division, AMD, 1–11.
28. Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773– 781.
29. Dong, Y., Wu, S., Xu, S. S., Zhang, Y., & Fang, S. (2010). Analysis of concrete fracture using a novel cohesive crack method. Applied Mathematical Modelling, 34(12), 4219–4231.
30. Ha, Y. D., & Bobaru, F. (2010). Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture, 162(1–2), 229–244.
31. Becker, T. L., Cannon, R. M., & Ritchie, R. O. (2002). Statistical fracture modeling: Crack path and fracture criteria with application to homogeneous and functionally graded materials. Engineering Fracture Mechanics, 69(14–16), 1521– 1555.
    • Article View: 256
    • PDF Download: 223
International Research Journal on Advanced Science Hub
Volume 1, Issue 1
May 2019
Page 33-41
Files
  • XML
  • PDF 715.17 K
History
  • Receive Date: 04 May 2019
  • Revise Date: 22 May 2019
  • Accept Date: 27 May 2019
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
Statistics
  • Article View: 256
  • PDF Download: 223

APA

C, N. , M, P. , S, P. , V, K. and ., P. (2019). Study on the Effect different materials in Traffic signal pole using numerical simulation approach. International Research Journal on Advanced Science Hub, 1(1), 33-41. doi: 10.47392/irjash.2019.06

MLA

C, N. , , M, P. , , S, P. , , V, K. , and ., P. . "Study on the Effect different materials in Traffic signal pole using numerical simulation approach", International Research Journal on Advanced Science Hub, 1, 1, 2019, 33-41. doi: 10.47392/irjash.2019.06

HARVARD

C, N., M, P., S, P., V, K., ., P. (2019). 'Study on the Effect different materials in Traffic signal pole using numerical simulation approach', International Research Journal on Advanced Science Hub, 1(1), pp. 33-41. doi: 10.47392/irjash.2019.06

CHICAGO

N. C , P. M , P. S , K. V and P. ., "Study on the Effect different materials in Traffic signal pole using numerical simulation approach," International Research Journal on Advanced Science Hub, 1 1 (2019): 33-41, doi: 10.47392/irjash.2019.06

VANCOUVER

C, N., M, P., S, P., V, K., ., P. Study on the Effect different materials in Traffic signal pole using numerical simulation approach. International Research Journal on Advanced Science Hub, 2019; 1(1): 33-41. doi: 10.47392/irjash.2019.06

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Sitemap

News

  • Career at RSP SCIENCE HUB 2024-05-03

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com