• Register
  • Login

International Research Journal on Advanced Science Hub

  1. Home
  2. Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics

Current Issue

By Issue

By Author

Author Index

Keyword Index

About Journal

News

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

Advertising policy

Editor and Reviewer guidelines

Digital Archiving & Preservation Policy

Copyright Terms

Licensing Terms

Editorial Process - Peer Reviewed

Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics

    Authors

    • Sarumathi S. 1
    • Navinkumar K. 2
    • Vadivel Kumar T. 2
    • Sharan Viswanathan R. 2

    1 Professor, Department of Information Technology, K. S. Rangasamy College of Technology, Tamil Nadu, India.

    2 Department of Information Technology, K. S. Rangasamy College of Technology, Tamil Nadu, India.

,

Document Type : Research Article

10.47392/irjash.2021.136
  • Article Information
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

In the real data world, there are various clustering algorithms available in data mining. The data available from the different data sources may be huge in instances, attributes and in different formats. The clustering algorithms available are assessed based on how the algorithm cluster the given data and find its parametric values.  The clustering of data may end in inappropriate results if the algorithm is not chosen wisely. This paper proposes a comparison between diverse clustering algorithms such as K Means clustering, Mini-Batch K Means clustering, Hierarchical clustering, Bagging and Boosting by figuring out clustering strategies using high dimensional datasets on each algorithm above. After the process of data cleaning in dataset, we have clustered the datasets and compared the summary of each to showcase the comparability of difference in their strategical values such as Clustering tendency, clustering quality and data driven approach for evaluating the number of clusters, Normalized Mutual Information (NMI) metric and provide an idea to choose the algorithm for clustering the data effectively. And as a result, Local Clustering Coefficient (LCC) with K-means clustering bunching method performs better than the other clustering algorithms and the results are reported.

Keywords

  • Bagging
  • Boosting
  • Clustering
  • Data mining
  • Evaluation Metrics
  • LCC
  • XML
  • PDF 220.5 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
    • Article View: 273
    • PDF Download: 198
International Research Journal on Advanced Science Hub
Volume 03, Special Issue ICITCA-2021 5S - Issue Serial Number 5
May 2021
Page 30-37
Files
  • XML
  • PDF 220.5 K
History
  • Receive Date: 01 January 1970
  • Accept Date: 01 January 1970
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
Statistics
  • Article View: 273
  • PDF Download: 198

APA

S., S. , K., N. , T., V. K. and R., S. V. (2021). Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics. International Research Journal on Advanced Science Hub, 03(Special Issue ICITCA-2021 5S), 30-37. doi: 10.47392/irjash.2021.136

MLA

S., S. , , K., N. , , T., V. K. , and R., S. V. . "Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics", International Research Journal on Advanced Science Hub, 03, Special Issue ICITCA-2021 5S, 2021, 30-37. doi: 10.47392/irjash.2021.136

HARVARD

S., S., K., N., T., V. K., R., S. V. (2021). 'Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics', International Research Journal on Advanced Science Hub, 03(Special Issue ICITCA-2021 5S), pp. 30-37. doi: 10.47392/irjash.2021.136

CHICAGO

S. S. , N. K. , V. K. T. and S. V. R., "Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics," International Research Journal on Advanced Science Hub, 03 Special Issue ICITCA-2021 5S (2021): 30-37, doi: 10.47392/irjash.2021.136

VANCOUVER

S., S., K., N., T., V. K., R., S. V. Analyzing Of Clustering Algorithms for Achieving High Evaluation Metrics. International Research Journal on Advanced Science Hub, 2021; 03(Special Issue ICITCA-2021 5S): 30-37. doi: 10.47392/irjash.2021.136

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Sitemap

News

  • Career at RSP SCIENCE HUB 2024-05-03

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com