Abstract
Cellulose is of special interest due to its abundance in nature and it provides excellent materials for membranes both in native and derivatized forms. Graft copolymers of cellulose when used in separation and enrichment technologies have advantages over the conventional ones, due to chemical resistance, radiation stability and low cost of preparation. Cellulose based graft copolymers and hydrogels offer large hydrophilic area despite being insoluble in water and enrich or separate metal ion by binding, adsorption, chelation and ion exchange processes. Potential of cellulose as sorbent can be improved by radiation and chemical grafting, crosslinking and polymer analogous reactions on some graft copolymers. Grafting of suitable monomers with hydrophobic and hydrophilic/ionic moieties combine high degree of selectivity, permeability and longer stability, and enables complexation with low molecular weight species. Incorporation of functional groups like nitrile, hydrazino, hydroxamic acid and phosphate by derivatization and post polymer reactions enhances metal ion sorption capacity of Cellulosics. In present study an attempt has been made to study the sorption of Fe+2, Cu+2 and I2 on select graft copolymers of cellulose with N-Vinylpyrrolidone (1-Vinyl-2-prrolidone, N-VP) and Butyl Acrylate(BuAc) on to cellulose and some of their functionalized derivatives, on the basis of lowest to highest percent grafting (Pg). An attempt has also been made to investigate selectivity in metal ion sorption and effects of structural aspects of functionalized graft copolymers to find their end-uses as cost effective and eco-friendly polymeric materials for waste water management technologies.