Anantharaj, Sengeni, Subrata Kundu, and Suguru Noda. ““The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts”. Nano Energy 80 (2021): 105514–105514. 10.1016/j.nanoen.2020.105514.
Chen, Zhu, Coleman X. Kronawitter, and Bruce E. Koel. “Facet-dependent activity and stabil- ity of Co¡sub¿3¡/sub¿O¡sub¿4¡/sub¿nanocrystals towards the oxygen evolution reaction”. Physi- cal Chemistry Chemical Physics 17.43 (2015): 29387–29393. 10.1039/c5cp02876k.
Gao, Min-Rui, et al. “Nitrogen-Doped Graphene Supported CoSe¡sub¿2¡/sub¿ Nanobelt Compos- ite Catalyst for Efficient Water Oxidation”. ACS Nano 8.4 (2014): 3970–3978. 10 . 1021 / nn500880v.
He, Hongzhe, et al. “Dual Metal-Loaded Porous Carbon Materials Derived from Silk Fibroin as Bifunctional Electrocatalysts for Hydrogen Evo- lution Reaction and Oxygen Evolution Reaction”. ACS Applied Materials & Interfaces 13.26 (2021): 30678–30692. 10.1021/acsami.1c07058.
Huang, Haiping and Jun-Jie Zhu. “The electrochem- ical applications of rare earth-based nanomateri- als”. The Analyst 144.23 (2019): 6789–6811. 10.1039/c9an01562k.
Inta, Harish Reddy, et al. “Ni0. 85Se/MoSe2 Inter- facial Structure: An Efficient Electrocatalyst for Alkaline Hydrogen Evolution Reaction”. ACS Applied Energy Materials 4.3 (2021): 2828–2837. 10.1021/acsaem.1c00125.
Jin, S. “Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts?” ACS Energy Letters 2.8 (2017): 1937–1938. doi . org / 10 . 1021 /acsenergylett.7b00679.
Leduc, Jennifer, et al. “Rare-Earth-Containing Materials for Photoelectrochemical Water Split- ting Applications”. Semiconductors and Semimet- als 97 (2017): 185–219. doi . org / 10 . 1016 / bs . semsem.2017.05.001.
Lee, Hyeon Jeong, et al. “Mixed Transition Metal Oxide with Vacancy-Induced Lattice Distortion for Enhanced Catalytic Activity of Oxygen Evo- lution Reaction”. ACS Catalysis 9.8 (2019):7099–7108.10.1021/acscatal.9b01298.
Liu, Youwen, et al. “Low Overpotential in Vacancy- Rich Ultrathin CoSe¡sub¿2¡/sub¿ Nanosheets for Water Oxidation”. Journal of the American Chemical Society 136.44 (2014): 15670–15675. 10.1021/ja5085157.
Majhi, Kartick Chandra and Mahendra Yadav. “Bimetallic chalcogenide nanocrystallites as effi- cient electrocatalyst for overall water splitting”. Journal of Alloys and Compounds 852 (2021): 156736–156736. 10.1016/j.jallcom.2020.156736.
Manjunatha, C, et al. “Development of non- stoichiometric hybrid Co3S4/Co0.85Se nanocomposites for an evaluation of syner- gistic effect on the OER performance”. Surfaces and Interfaces 25 (2021): 101161–101161. 10.1016/j.surfin.2021.101161.
Shi, Huijie and Guohua Zhao. “Water Oxida- tion on Spinel NiCo¡sub¿2¡/sub¿O¡sub¿4¡/sub¿ Nanoneedles Anode: Microstructures, Specific Surface Character, and the Enhanced Electro- catalytic Performance”. The Journal of Physical Chemistry C 118.45 (2014): 25939–25946. 10 . 1021/jp508977j.
Wu, Jian, et al. “Co3O4 nanocrystals on single- walled carbon nanotubes as a highly efficient oxygen-evolving catalyst”. Nano Research 5.8 (2012): 521–530. 10.1007/s12274-012-0237-y.Zhu, Jing, et al. “Recent Advances in Electrocat- alytic Hydrogen Evolution Using Nanoparticles”. Chemical Reviews 120.2 (2020): 851–918. 10 . 1021/acs.chemrev.9b00248.