• Register
  • Login

International Research Journal on Advanced Science Hub

  1. Home
  2. A Data Mining based study on Dengue Fever: A Review

Current Issue

By Issue

By Author

Author Index

Keyword Index

About Journal

News

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

Advertising policy

Editor and Reviewer guidelines

Digital Archiving & Preservation Policy

Copyright Terms

Licensing Terms

Editorial Process - Peer Reviewed

A Data Mining based study on Dengue Fever: A Review

    Authors

    • Kousik Bhattacharya 1
    • Avijit Kumar Chaudhuri 2
    • Anirban Das 3
    • Dilip K. Banerjee 4

    1 Research Scholar, Department of Computer Application, Seacom Skills University, West Bengal, India

    2 Assistant Professor, Department of Computer Science and Engineering, Techno Engineering College Banipur, Kolkata, West Bengal, India

    3 Professor, University of Engineering and Management, Kolkata, West Bengal, India

    4 University Research Professor, Seacom Skills University, West Bengal, India

,

Document Type : Review Article

10.47392/irjash.2022.025
  • Article Information
  • References
  • Download
  • Highlights
  • Full Text
  • Export Citation
  • Statistics
  • Share

Abstract

 
Dengue fever (DF) is amosquitoborne disease spread by female Aedes mosquito. Dengue transmission depends on the changing of climatic parame- ters like temperature, humidity, rainfall, as well as the congestion in an area, i.e., where the population density is high. In this review, we have highlighted the reasons of the occurrence of DF and methods for early detection of the same. Symptoms are the key points to diagnose the dengue patients. Many diseases like Malaria, Chikungunia, Typhoid, COVID-19, etc. have the com- mon symptoms of fever, body pain, eye pain, diarrhoea, etc. Few rare symp- toms have been identified for diagnosing DF using machine learning predictive model. Rare symptoms are skin disease, headache, abdominal pain for early detection of dengue.

Keywords

  • Dengue
  • Malaria
  • Chikungunia
  • Typhoid
  • Covid19

Highlights

 

Full Text

 

  • XML
  • PDF 2.09 M
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
References
 Arafiyah, Ria and Fariani Hermin. “Data mining for dengue hemorrhagic fever (DHF) prediction with naive Bayes method”. Journal of Physics: Conference Series 948.1 (2018): 012077–012077. 10. 1088/1742-6596/948/1/012077.
Caicedo-Torres,   William,   A´ ngel   Paternina,   and Hernando   Pinzo´n.   “Machine   learning   models for early dengue severity prediction”. Ibero- American Conference on Artificial Intelligence (2016). 10.1007/978-3-319-47955-2 21.
Chadwick, David, et al. “Distinguishing dengue fever from other infections on the basis of sim- ple clinical and laboratory features: Application of logistic regression analysis”. Journal of Clini- cal Virology 35.2 (2006): 147–153. 10.1016/j.jcv.2005.06.002.
Chang, Ko. “Dengue fever scoring system: new strategy for the early detection of acute dengue virus infection in Taiwan”. Journal of the For- mosan Medical Association 108 (2009): 879–885. 10.1016/S0929-6646(09)60420-4.
Cheong,  Yoon  Ling,  Pedro  J.  Leita˜o,  and  Tobia Lakes. “Assessment of land use factors associ- ated with dengue cases in Malaysia using Boosted Regression Trees”. Spatial and Spatio-temporal Epidemiology 10 (2014): 75–84. 10.1016/j.sste.2014.05.002.
Fathima, A and D Manimegalai. “Predictive analy- sis for the arbovirus-dengue using svm classifica- tion”. International Journal of Engineering and Technology 2.3 (2012): 521–528. 10 . 1 . 1 . 411 .9082.
I Nordin, N, et al. “The Classification Performance using Support Vector Machine for Endemic Dengue Cases”. Journal of Physics: Conference Series 1496.1 (2020): 012006–012006. 10.1088/ 1742-6596/1496/1/012006.
Mello-Roma´n,  Jorge  D.,  et  al.  “Predictive  Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay”. Computational and Mathe- matical Methods in Medicine 2019 (2019): 1–7. 10.1155/2019/7307803.
Niriella, Madunil A., et al. “Identification of dengue patients with high risk of severe disease, using early clinical and laboratory features, in     a resource-limited setting”. Archives of Virology 165.9 (2020): 2029–2035. 10.1007/s00705-020-04720-5.
Rosid, M A, et al. “Classification Of Dengue Hemorrhagic Disease Using Decision Tree With Id3 Algorithm”. Journal of Physics: Conference Series 1381.1 (2019): 012039–012039. 10.1088/ 1742-6596/1381/1/012039.
Sahak, Mohammad Nadir. “Dengue fever as an emerging disease in Afghanistan: Epidemiology of the first reported cases”. International Journal of Infectious Diseases 99 (2020): 23–27. 10.1016/ j.ijid.2020.07.033.
Salami, Donald. “Predicting dengue importation into Europe, using machine learning and model-agnostic methods”. Scientific Reports 10 (2020):1–13. 10.1038/s41598-020-66650-1.
Yue, Yujuan, et al. “Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014”. International Journal of Infectious Diseases 75 (2018): 39–48. 10.1016/j.ijid.2018.07.023.
    • Article View: 433
    • PDF Download: 265
International Research Journal on Advanced Science Hub
Volume 4, Issue 04
April 2022
Page 101-107
Files
  • XML
  • PDF 2.09 M
History
  • Receive Date: 24 March 2022
  • Revise Date: 25 April 2022
  • Accept Date: 27 April 2022
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
Statistics
  • Article View: 433
  • PDF Download: 265

APA

Bhattacharya, K. , Chaudhuri, A. K. , Das, A. and Banerjee, D. K. (2022). A Data Mining based study on Dengue Fever: A Review. International Research Journal on Advanced Science Hub, 4(04), 101-107. doi: 10.47392/irjash.2022.025

MLA

Bhattacharya, K. , , Chaudhuri, A. K. , , Das, A. , and Banerjee, D. K. . "A Data Mining based study on Dengue Fever: A Review", International Research Journal on Advanced Science Hub, 4, 04, 2022, 101-107. doi: 10.47392/irjash.2022.025

HARVARD

Bhattacharya, K., Chaudhuri, A. K., Das, A., Banerjee, D. K. (2022). 'A Data Mining based study on Dengue Fever: A Review', International Research Journal on Advanced Science Hub, 4(04), pp. 101-107. doi: 10.47392/irjash.2022.025

CHICAGO

K. Bhattacharya , A. K. Chaudhuri , A. Das and D. K. Banerjee, "A Data Mining based study on Dengue Fever: A Review," International Research Journal on Advanced Science Hub, 4 04 (2022): 101-107, doi: 10.47392/irjash.2022.025

VANCOUVER

Bhattacharya, K., Chaudhuri, A. K., Das, A., Banerjee, D. K. A Data Mining based study on Dengue Fever: A Review. International Research Journal on Advanced Science Hub, 2022; 4(04): 101-107. doi: 10.47392/irjash.2022.025

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Sitemap

News

  • Career at RSP SCIENCE HUB 2024-05-03

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com