Arafiyah, Ria, and Fariani Hermin. “Data mining for dengue hemorrhagic fever (DHF) prediction with naive Bayes method”. Journal of Physics: Con- ference Series 948 (2018). 10.1088/1742- 6596/ 948/1/012077.
Balasaravanan, K. and M. Prakash. “Detection of dengue disease using artificial neural net- work based classification technique”. Interna- tional Journal of Engineering & Technology 7.1.3 (2017): 13–13. 10.14419/ijet.v7i1.3.8978.
Caicedo-Torres, A´ ngelpaternina William, and Hernando Pinzo´n. “Machine learning models for early dengue severity prediction”. Ibero- American Conference on Artificial Intelligence (2016). 10.1007/978-3-319-47955-2 21.
Chang, Ko. “Dengue fever scoring system: new strategy for the early detection of acute dengue virus infection in Taiwan”. Journal of the Formosan Medical Association 108 (2009): 879–885. 10.1016/S0929-6646(09)60420-4.
Chien, et al. “An app detecting dengue fever in children: using sequencing symptom patterns for a web-based assessment”. JMIR mHealth and uHealth 7.5 (2019). 10.2196/11461.
Fathima, A and D Manimegalai. “Predictive analysis for the arbovirus-dengue using svm classifica- tion”. International Journal of Engineering and Technology 2.3 (2012): 521–528. 10 . 1 . 1 . 411 .
9082.
Gomes, Ana and V Lisa. “Classification of dengue fever patients based on gene expression data using support vector machines”. PloS one 5 (2010). 10. 1371/journal.pone.0011267.
Hasan, Shamimul, et al. “Dengue virus: A global human threat: Review of literature”. Journal of International Society of Preventive and Commu- nity Dentistry 6.1 (2016): 1–1. 10 . 4103 / 2231 -0762.175416.
I Nordin, N. “The Classification Performance using Support Vector Machine for Endemic Dengue Cases”. Journal of Physics: Conference Series 1496.1 (2020). 10 . 1088 / 1742 - 6596 / 1496 % 20 /1/012006.
Kapoor, Rajeev, Virender Kadyan, and Sachin Ahuja. “Identification of Influential Parameter for Early Detection of Dengue Using Machine Learn- ing Approach”. Proceedings of the 5th Interna- tional Conference on Cyber Security & Privacy in Communication Networks (ICCS). 2019 (). 10. 2139/ssrn.3511419.
Mello-Roma´n, Jorge D., et al. “Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay”. Computational and Mathe- matical Methods in Medicine 2019 (2019): 1–7. 10.1155/2019/7307803.
Rohan, Tanbin and Islam. “A precise breast can- cer detection approach using ensemble of random forest with AdaBoost”. 2019 International Con- ference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2) (2019). 10 . 1109 / IC4ME % 20247184 . 2019 .9036697.
Rosid, M A, et al. “Classification Of Dengue Hemorrhagic Disease Using Decision Tree With Id3 Algorithm”. Journal of Physics: Conference Series 1381.1 (2019): 012039–012039. 10.1088/ 1742-6596/1381/1/012039.
Salami, Donald. “Predicting dengue importation into Europe, using machine learning and model- agnostic methods”. Scientific Reports 10 (2020). 10.1038/s41598-020-66650-1.
Silitonga and Permatasari. “Evaluation of Dengue Model Performances Developed Using Artificial Neural Network and Random Forest Classifiers”.Procedia Computer Science 179 (2021). 10.1016/ j.procs.2020.12.%20018.