• Register
  • Login

International Research Journal on Advanced Science Hub

  1. Home
  2. Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm

Current Issue

By Issue

By Author

Author Index

Keyword Index

About Journal

News

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

Advertising policy

Editor and Reviewer guidelines

Digital Archiving & Preservation Policy

Copyright Terms

Licensing Terms

Editorial Process - Peer Reviewed

Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm

    Authors

    • Jalal deen K 1
    • Karthigai Priya G 2
    • Magesh B 2
    • Kubendran R 2

    1 Asst Prof (S.G), Department of ECE,Solamalai College of Engineering, Madurai.

    2 Department of ECE, Solamalai College of Engineering, Madurai.

,

Document Type : Research Article

10.47392/irjash.2021.016
  • Article Information
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

The main principle for the system-based study of lung cancers in CT images is cancer cell recognition and segmentation. Anyhow, in low-contrast pictures, it is a complex job as the low-level images are too small to detect. We are proposing a new technique in this project for the automated detection of lung cancers. Alternatively, by probability density function estimation, we enhance the intensity contrast of CT images. We use the expectation maximization / maximization of the posterior marginal to find cancerous areas. Finally, to decrease noise and classify focal cancers, we use shape limitation. The resolution of more than 95 percent of this fuzzy-based segmentation method is achieved and 9 percent accuracy is also given.

Keywords

  • Fuzzy C-means
  • CT scan
  • CNN
  • Expectation maximization/Maximization
  • neural network
  • XML
  • PDF 386.41 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
    • Article View: 282
    • PDF Download: 225
International Research Journal on Advanced Science Hub
Volume 03, Special Issue ICEST 1S - Issue Serial Number 1
January 2021
Page 30-33
Files
  • XML
  • PDF 386.41 K
History
  • Receive Date: 02 January 2021
  • Revise Date: 21 January 2021
  • Accept Date: 25 January 2021
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
Statistics
  • Article View: 282
  • PDF Download: 225

APA

K, J. D. , G, K. P. , B, M. and R, K. (2021). Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm. International Research Journal on Advanced Science Hub, 03(Special Issue ICEST 1S), 30-33. doi: 10.47392/irjash.2021.016

MLA

K, J. D. , , G, K. P. , , B, M. , and R, K. . "Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm", International Research Journal on Advanced Science Hub, 03, Special Issue ICEST 1S, 2021, 30-33. doi: 10.47392/irjash.2021.016

HARVARD

K, J. D., G, K. P., B, M., R, K. (2021). 'Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm', International Research Journal on Advanced Science Hub, 03(Special Issue ICEST 1S), pp. 30-33. doi: 10.47392/irjash.2021.016

CHICAGO

J. D. K , K. P. G , M. B and K. R, "Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm," International Research Journal on Advanced Science Hub, 03 Special Issue ICEST 1S (2021): 30-33, doi: 10.47392/irjash.2021.016

VANCOUVER

K, J. D., G, K. P., B, M., R, K. Identification of CT Lung Tumor Using Fuzzy Clustering Algorithm. International Research Journal on Advanced Science Hub, 2021; 03(Special Issue ICEST 1S): 30-33. doi: 10.47392/irjash.2021.016

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Sitemap

News

  • Career at RSP SCIENCE HUB 2024-05-03

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com