• Register
  • Login

International Research Journal on Advanced Science Hub

  1. Home
  2. Comparison of multi-class motor imagery classification methods for EEG signals

Current Issue

By Issue

By Author

Author Index

Keyword Index

About Journal

News

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

Advertising policy

Editor and Reviewer guidelines

Digital Archiving & Preservation Policy

Copyright Terms

Licensing Terms

Editorial Process - Peer Reviewed

Comparison of multi-class motor imagery classification methods for EEG signals

    Authors

    • Ms. Nikita 1
    • Sandeep Kumar 2
    • Prabhakar Agarwal 3
    • Manisha Bharti 2

    1 PG Electronics & Communication Engineering, National Institute of Technology Delhi, Delhi, India

    2 Assistant Professor, Electronics & Communication Engineering, National Institute of Technology, Delhi, India

    3 Assistant Professor, Computer Science & Engineering, National Institute of Technology, Delhi, India

,

Document Type : Research Article

10.47392/irjash.2022.073
  • Article Information
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

This paper presents a comparative study of EEG-based multiclass motor imagery classifiers based on Kullback-Leiber regularised Riemann Mean and support vector machine, hybrid one versus one classifier, linear discriminant analysis, and convolutional neural network. The paper is felt to be of inter- est to those researchers working in the motor imagery classification of EEG signals. The work presented in this paper helps to understand the basics of different multi-class motor imagery classifiers, their accuracy, and the number of channels involved.

Keywords

  • BrainComputer Interface
  • Classification
  • EEG
  • Motorimagery
  • XML
  • PDF 2.52 M
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
    • Article View: 181
    • PDF Download: 119
International Research Journal on Advanced Science Hub
Volume 4, Issue 12
December 2022
Page 306-311
Files
  • XML
  • PDF 2.52 M
History
  • Receive Date: 08 November 2022
  • Revise Date: 14 December 2022
  • Accept Date: 23 December 2022
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • CHICAGO
  • VANCOUVER
Statistics
  • Article View: 181
  • PDF Download: 119

APA

Nikita, M. , Kumar, S. , Agarwal, P. and Bharti, M. (2022). Comparison of multi-class motor imagery classification methods for EEG signals. International Research Journal on Advanced Science Hub, 4(12), 306-311. doi: 10.47392/irjash.2022.073

MLA

Nikita, M. , , Kumar, S. , , Agarwal, P. , and Bharti, M. . "Comparison of multi-class motor imagery classification methods for EEG signals", International Research Journal on Advanced Science Hub, 4, 12, 2022, 306-311. doi: 10.47392/irjash.2022.073

HARVARD

Nikita, M., Kumar, S., Agarwal, P., Bharti, M. (2022). 'Comparison of multi-class motor imagery classification methods for EEG signals', International Research Journal on Advanced Science Hub, 4(12), pp. 306-311. doi: 10.47392/irjash.2022.073

CHICAGO

M. Nikita , S. Kumar , P. Agarwal and M. Bharti, "Comparison of multi-class motor imagery classification methods for EEG signals," International Research Journal on Advanced Science Hub, 4 12 (2022): 306-311, doi: 10.47392/irjash.2022.073

VANCOUVER

Nikita, M., Kumar, S., Agarwal, P., Bharti, M. Comparison of multi-class motor imagery classification methods for EEG signals. International Research Journal on Advanced Science Hub, 2022; 4(12): 306-311. doi: 10.47392/irjash.2022.073

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Sitemap

News

  • Career at RSP SCIENCE HUB 2024-05-03

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com